MONOTONIC MAXIMIN: A ROBUST STACKELBERG SOLUTION AGAINST BOUNDEDLY RATIONAL FOLLOWERS

<u>Albert Xin Jiang</u>, Thanh H. Nguyen, Milind Tambe University of Southern California

Ariel D. Procaccia *Carnegie Mellon University*

GameSec, Nov. 11, 2013

Deployed Physical Security Applications

- Limited security resources: selective checking
- Adversary monitors defense, exploits pattern

Stackelberg Games

- Leader (defender) commits to mixed strategy
- Follower (adversary) conducts surveillance and responds

		Adversary
	Target #1	Target #2
Target #1	5, -3	-1, 1
Target #2	-5, 5	2, -1

Bounded Rationality

- Strong Stackelberg equilibrium: Classical game theory
 - Assumes perfect rationality (maximize expected utility)
- In reality, adversaries are humans
- Quantal Response (McFadden; Mckelvey & Palfrey; Yang et al)

$$q_i(x) = \frac{e^{\lambda U_i^a(x)}}{\sum_j e^{\lambda U_j^a(x)}}$$

Need data to estimate parameter

Robust Optimization Approaches

- Uncertainty set: set of possible response functions by the adversary
- Optimize worst-case defender utility
- Allow arbitrary adversary response: Maximin
 - Robust but very conservative
- Are there more interesting ways to define uncertainty set that captures bounded-rational behavior?

Monotonic Maximin

- Monotonicity: actions with higher expected utility are played with higher probability
 - QR satisfies monotonicity
- Monotonic maximin: optimize defender utility against worst-case monotonic adversary
 - A robust alternative to QR
 - Provides guarantee against all "reasonably rational" adversary
- Computing monotonic maximin
 - MILP formulation
 - Approximations

Game

- Defender mixed strategy
 - X convex
- Adversary mixed strategy

 $x\in X\subset \mathbb{R}^m$

 $y \in Y$

 $Y = \{ y \in R^n | y \ge 0, \mathbf{1}^T y = 1 \}$

• Payoff Matrices $A, B \in \mathbb{R}^{m \times n}$

• Expected utility $x^T A y = x^T B y$

Behavior Models of Adversary

Logit Quantal Resposse

$$q_i(x) = \frac{e^{\lambda U_i^a(x)}}{\sum_j e^{\lambda U_j^a(x)}}$$

- Regular Quantal Response (Goeree et al)
 - 1. Interiority: $P_j(u) > 0$ for all j.
 - 2. Continuity: $P_j(u)$ is continuously differentiable.
 - 3. Responsiveness: $\frac{\partial P_j(u)}{\partial u_j} > 0$ for all j.
 - 4. Monotonicity: $u_j > u_k \Rightarrow P_j(u) > P_k(u)$ for all j, k.

Monotonic Maximin

Definition 1. Given $x \in X, y \in Y$, we say y satisfies closed monotonicity if for all $i, j \in [n], x^T Be_i \ge x^T Be_j \Rightarrow y_i \ge y_j$.

- $Q(x) \subseteq Y$ the set of closed monotonic adversary strategies
- Monotonic Maximin:

$$\arg \max_{\boldsymbol{x} \in X} \min_{\boldsymbol{y} \in Q(\boldsymbol{x})} \boldsymbol{x}^T A \boldsymbol{y}$$

Properties of Monotonic Maximin

- Monotonic maximin exists in all Stackelberg games
- For zero-sum games, coincides with maximin
- Captures all Regular Quantal Response models
 - Worst-case monotonic response is arbitrarily close to worst-case Regular QR
- Captures other model uncertainties, e.g. payoff
 - add i.i.d. noise (smooth, zero mean) to adversary payoff, assuming adversary best responds, the resulting behavior is monotonic

Computation

 $rg\max_{oldsymbol{x}\in X}\min_{oldsymbol{y}\in Q(oldsymbol{x})}x^TAoldsymbol{y}$

- Nontrivial because feasible space of follower depends on leader strategy
- The set Q(x) depends only on the ordering of actions in terms of adversary expected utilities
 - Finite # of orderings, thus finite # of possible Q(x)

Partitioning of leader strategy space X

Corresponding Q(x): $y_C \ge y_B \ge y_A$

Partitioning of leader strategy space X

Corresponding Q(x): $y_C \ge y_A \ge y_B$

Partitioning of leader strategy space X

В

Multiple-LP approach

For each total order on the set of actions, solve

 $\max_{\boldsymbol{x}\in E^{-1}(\mathcal{E})}\min_{\boldsymbol{y}\in Q(x)}x^TA\boldsymbol{y}$

Can be formulated as LP

$$V_F = \max_{\boldsymbol{x}, \boldsymbol{\lambda}, t} t$$

$$C\boldsymbol{x} \le d$$

$$\boldsymbol{x}^T BF \ge 0$$

$$F\boldsymbol{\lambda} + t\mathbf{1} \le A^T \boldsymbol{x}$$

$$\boldsymbol{\lambda} \ge 0$$

- Only need to look at strict orders (permutations)
 - Still exponential # of LPs!

MILP formulation

- Use integer variables to encode the ordering
- *z*_{ij} binary integer that indicates whether adversary utility for action i is better than utility for action j
- Mixed integer quadratic program; can transform to MILP

$$\max_{\boldsymbol{x},\boldsymbol{w},t,\boldsymbol{z}} t$$

$$C\boldsymbol{x} \leq d$$

$$\boldsymbol{x}^{T} B \boldsymbol{e}_{\boldsymbol{i}} + M(1 - z_{ij}) \geq \boldsymbol{x}^{T} B \boldsymbol{e}_{\boldsymbol{j}}, \ \forall i, j$$

$$\sum_{i,j} w_{ij}(\boldsymbol{e}_{\boldsymbol{i}} - \boldsymbol{e}_{\boldsymbol{j}}) + t\mathbf{1} \leq A^{T}\boldsymbol{x}$$

$$0 \leq w_{ij} \leq z_{ij}N$$

$$z_{ij} \in \{0, 1\}$$

$$z_{ij} + z_{ji} \geq 1$$

$$(1 - z_{ij}) + (1 - z_{jk}) + z_{ik} \geq 1.$$

Top-monotonic maximin

- Top-monotonicity: the best response action is played with higher probability than other actions
 - For each action i,

 $x^T B e_i \ge x^T B e_j \; \forall j \Rightarrow y_i \ge y_j \; \forall j.$

Top-monotonic maximin: defined analogously

 $\arg\max_{x\in X}\min_{y\in\widehat{Q}(x)}x^{T}Ay$

- Lower bound on MM, i.e. more conservative
- Computation: polynomial time

solve n LPs, one for the case of action i being best response

Partitioning of X: monotonic maximin

Partitioning of X: top-monotonic

Experiments: solution quality

(a) 6 Targets, 3 Defender Resources

Runtime performance

(a) 5-10 Targets, 3 Defender Resources

(b) 10-70 Targets, 6 Defender Resources

Conclusions

- A robust-optimization approach to dealing with bounded rationality in Stackelberg games
 - Monotonic maximin: robust against any monotonic adversary
 - Computing MM: formulate as MILP
 - Top-monotonic maximin: a more conservative solution; easier to compute

Future Work and Open Problems

- More efficient computation
- Relations to / combining with other uncertainties
- How to incorporate data
- Multiple followers
 - Replacing QRE with monotonic version