Polynomial-time Computation of Exact Correlated Equilibrium in Compact Games

Albert Xin Jiang Kevin Leyton-Brown Department of Computer Science University of British Columbia

June 7, 2011

Polynomial-time Computation of Exact Correlated Equilibrium

Jiang and Leyton-Brown

Correlated Equilibrium

- correlated equilibrium (CE) [Aumann, 1974; Aumann, 1987]
 - generalization of Nash equilibrium

Correlated Equilibrium

- correlated equilibrium (CE) [Aumann, 1974; Aumann, 1987]
 - generalization of Nash equilibrium
 - natural learning dynamics converge to CE

Correlated Equilibrium

- correlated equilibrium (CE) [Aumann, 1974; Aumann, 1987]
 - generalization of Nash equilibrium
 - natural learning dynamics converge to CE
 - tractable to compute: LP
 - polynomial in the size of the normal form

Compact representations are necessary for large games with structured utility functions

- symmetric games / anonymous games
- graphical games [Kearns, Littman & Singh, 2001]
- action-graph games [Jiang, Leyton-Brown & Bhat, 2011]

Compact representations are necessary for large games with structured utility functions

- symmetric games / anonymous games
- graphical games [Kearns, Littman & Singh, 2001]
- action-graph games [Jiang, Leyton-Brown & Bhat, 2011]

Computation of solution concepts

Compact representations are necessary for large games with structured utility functions

- symmetric games / anonymous games
- graphical games [Kearns, Littman & Singh, 2001]
- action-graph games [Jiang, Leyton-Brown & Bhat, 2011]

Computation of solution concepts

- NASH: PPAD-complete \rightarrow PPAD-complete [Daskalakis *et al.*, 2006]
- Pure Nash: $P \rightarrow NP$ -complete [Gottlob *et al.*, 2005]

Compact representations are necessary for large games with structured utility functions

- symmetric games / anonymous games
- graphical games [Kearns, Littman & Singh, 2001]
- action-graph games [Jiang, Leyton-Brown & Bhat, 2011]

Computation of solution concepts

- NASH: PPAD-complete \rightarrow PPAD-complete [Daskalakis *et al.*, 2006]
- Pure Nash: $P \rightarrow NP$ -complete [Gottlob *et al.*, 2005]
- CE: $P \rightarrow ?$

• Papadimitriou & Roughgarden [2008]: polynomial-time algorithm for computing a CE

- Papadimitriou & Roughgarden [2008]: polynomial-time algorithm for computing a CE
- Stein, Parrilo & Ozdaglar [2010]:
 - this algorithm can fail to find a correct solution
 - a slightly modified version computes approximate CE in time polynomial in $\log \frac{1}{\epsilon}$ and representation size

- Papadimitriou & Roughgarden [2008]: polynomial-time algorithm for computing a CE
- Stein, Parrilo & Ozdaglar [2010]:
 - this algorithm can fail to find a correct solution
 - a slightly modified version computes approximate CE in time polynomial in $\log \frac{1}{\epsilon}$ and representation size
 - a class of similar algorithms also cannot find an exact solution

- Papadimitriou & Roughgarden [2008]: polynomial-time algorithm for computing a CE
- Stein, Parrilo & Ozdaglar [2010]:
 - this algorithm can fail to find a correct solution
 - a slightly modified version computes approximate CE in time polynomial in $\log \frac{1}{\epsilon}$ and representation size
 - a class of similar algorithms also cannot find an exact solution
- Our contribution:
 - a variant of Papadimitriou & Roughgarden's algorithm that computes an exact CE in polynomial time
 - conceptually simpler

- Papadimitriou & Roughgarden [2008]: polynomial-time algorithm for computing a CE
- Stein, Parrilo & Ozdaglar [2010]:
 - this algorithm can fail to find a correct solution
 - a slightly modified version computes approximate CE in time polynomial in $\log \frac{1}{\epsilon}$ and representation size
 - a class of similar algorithms also cannot find an exact solution
- Our contribution:
 - a variant of Papadimitriou & Roughgarden's algorithm that computes an exact CE in polynomial time
 - conceptually simpler
 - new attractive property: outputs CE with polynomial-sized support

→ E → < E →</p>

Outline

2 Papadimitriou and Roughgarden's Algorithm

Polynomial-time Computation of Exact Correlated Equilibrium

< ∃⇒

Outline

1 Problem Formulation

2 Papadimitriou and Roughgarden's Algorithm

3 Algorithm for Exact Correlated Equilibrium

Polynomial-time Computation of Exact Correlated Equilibrium i

A⊒ ▶ ∢ ∃

CE

simultaneous-move game

- n players
- player p's pure strategy $s_p \in S_p$
- pure strategy profile $s \in S = \prod_{p=1}^{n} S_p$
- utility for p under pure strategy profile s is integer u_s^p

< ≣ >

CE

simultaneous-move game

- n players
- player p's pure strategy $s_p \in S_p$
- pure strategy profile $s \in S = \prod_{p=1}^{n} S_p$
- utility for p under pure strategy profile s is integer \boldsymbol{u}_s^p

• a CE is a distribution x over S:

- $\bullet\,$ a trusted intermediary draws a strategy profile s from this distribution
- announce to each player p (privately) her own component s_p
- p will have no incentive to choose another strategy, assuming others follow suggestions

LP formulation

• incentive constraints: for all players p and all $i, j \in S_p$:

$$\sum_{s \in S_{-p}} [u_{is}^p - u_{js}^p] x_{is} \ge 0$$

write as

 $Ux \ge 0.$

3

- < ∃ >

LP formulation

• incentive constraints: for all players p and all $i, j \in S_p$:

$$\sum_{s\in S_{-p}} [u_{is}^p - u_{js}^p] x_{is} \ge 0$$

write as

 $Ux \ge 0.$

• x is a distribution: $x \ge 0$, $\sum_s x_s = 1$

3

LP formulation

• incentive constraints: for all players p and all $i, j \in S_p$:

$$\sum_{s\in S_{-p}} [u_{is}^p - u_{js}^p] x_{is} \ge 0$$

write as

$$Ux \ge 0.$$

•
$$x$$
 is a distribution: $x \ge 0$, $\sum_s x_s = 1$

•
$$m^n$$
 variables, nm^2 constraints

< ≣ >

Outline

1 Problem Formulation

2 Papadimitriou and Roughgarden's Algorithm

3 Algorithm for Exact Correlated Equilibrium

Polynomial-time Computation of Exact Correlated Equilibrium i

Jiang and Leyton-Brown

Unbounded LP and Infeasible Dual

• consider the linear program (P):

$$\max \sum_{s} x_s$$
$$Ux \ge 0, \qquad x \ge 0$$

Unbounded LP and Infeasible Dual

• consider the linear program (P):

$$\max \sum_{s} x_s$$
$$Ux \ge 0, \qquad x \ge 0$$

• interested in nonzero solution

Unbounded LP and Infeasible Dual

• consider the linear program (P):

$$\max \sum_{s} x_s$$
$$Ux \ge 0, \qquad x \ge 0$$

- interested in nonzero solution
- its dual (D)

$$U^T y \le -1$$
$$y \ge 0$$

has nm^2 variables, about m^n constraints

Polynomial-time Computation of Exact Correlated Equilibrium

Jiang and Leyton-Brown

< Ξ

- 17

- run the ellipsoid algorithm on (D), with the following Product Separation Oracle:
 - given a vector $y^{(i)} \ge 0$, compute product distribution $x^{(i)}$ such that $x^{(i)}U^Ty^{(i)} = 0$.
 - output cutting plane $[x^{(i)}U^T]y \leq -1.$

伺 と く ヨ と く ヨ と

- run the ellipsoid algorithm on (D), with the following Product Separation Oracle:
 - given a vector $y^{(i)} \ge 0$, compute product distribution $x^{(i)}$ such that $x^{(i)}U^Ty^{(i)} = 0$.
 - output cutting plane $[x^{(i)}U^T]y \leq -1.$
 - $[x^{(i)}U^T]$ are differences of expected utilities under product distributions

- run the ellipsoid algorithm on (D), with the following Product Separation Oracle:
 - given a vector $y^{(i)} \ge 0$, compute product distribution $x^{(i)}$ such that $x^{(i)}U^Ty^{(i)} = 0$.
 - output cutting plane $[x^{(i)}U^T]y \leq -1.$
 - $[x^{(i)}U^T]$ are differences of expected utilities under product distributions
 - Assumption: ∃ a poly-time algorithm for expected utilities under product distributions

A B K A B K

- run the ellipsoid algorithm on (D), with the following Product Separation Oracle:
 - given a vector $y^{(i)} \ge 0$, compute product distribution $x^{(i)}$ such that $x^{(i)}U^Ty^{(i)} = 0$.
 - output cutting plane $[x^{(i)}U^T]y \leq -1.$
 - $[\boldsymbol{x}^{(i)}\boldsymbol{U}^T]$ are differences of expected utilities under product distributions
 - Assumption: ∃ a poly-time algorithm for expected utilities under product distributions
- The ellipsoid algorithm will stop after a polynomial number of steps and determine that the program is infeasible.

向下 イヨト イヨト

• Consider the linear program (D'):

$$[XU^T]y \le -1, \qquad y \ge 0$$

whose constraints are the generated cutting planes.

• Consider the linear program (D'):

$$[XU^T]y \le -1, \qquad y \ge 0$$

whose constraints are the generated cutting planes.

- If we apply the same ellipsoid method, with a separation oracle that returns the cut $x^{(i)}U^Ty \leq -1$ given query $y^{(i)}$, it would go through the same sequence of queries $y^{(i)}$ and return infeasible.
- Therefore (D') is infeasible (presuming that numerical problems do not arise).

• Infeasibility of (D') implies that its dual program (P'):

$$[UX^T]\alpha \ge 0, \qquad \alpha \ge 0$$

is unbounded.

• (P') has polynomial size.

• Infeasibility of (D') implies that its dual program (P'):

```
[UX^T]\alpha \ge 0, \qquad \alpha \ge 0
```

is unbounded.

- (P') has polynomial size.
- $\bullet\,$ compute a nonzero solution $\alpha\,$
- $X^T \alpha$ is a nonzero solution of (P), therefore can be scaled to be a CE \Rightarrow mixture of polynomial number of product distributions

• Infeasibility of (D') implies that its dual program (P'):

```
[UX^T]\alpha \ge 0, \qquad \alpha \ge 0
```

is unbounded.

- (P') has polynomial size.
- $\bullet\,$ compute a nonzero solution $\alpha\,$
- $X^T \alpha$ is a nonzero solution of (P), therefore can be scaled to be a CE \Rightarrow mixture of polynomial number of product distributions

$$\begin{array}{rrrr} (P) & \to & (D) \\ \uparrow & & \downarrow \\ (P') & \leftarrow & (D') \end{array}$$

Numerical Precision Issues

- a run of the ellipsoid method requires as inputs
 - $\bullet\,$ initial ball with radius R
 - $\bullet\,$ volume lower bound v
- correct values of R and v depend on the \max encoding size of a constraint of the LP

Numerical Precision Issues

- a run of the ellipsoid method requires as inputs
 - $\bullet\,$ initial ball with radius R
 - $\bullet\,$ volume lower bound v
- correct values of R and v depend on the \max encoding size of a constraint of the LP
- a constraint of (D'), e.g. $x^{(i)}U^Ty \leq -1$, may require more bits than any of the constraints of (D)
 - infeasibility of (D') is not guaranteed

Numerical Precision Issues

- a run of the ellipsoid method requires as inputs
 - $\bullet\,$ initial ball with radius R
 - $\bullet\,$ volume lower bound v
- correct values of R and v depend on the \max encoding size of a constraint of the LP
- a constraint of (D'), e.g. x⁽ⁱ⁾U^Ty ≤ −1, may require more bits than any of the constraints of (D)
 - infeasibility of (D') is not guaranteed
- Papadimitriou and Roughgarden [2008] proposed a method to overcome this issue
- Stein, Parrilo & Ozdaglar [2010] showed that it is insufficient to compute an exact CE.

Numerical Precision Issues

- a run of the ellipsoid method requires as inputs
 - $\bullet\,$ initial ball with radius R
 - $\bullet\,$ volume lower bound v
- correct values of R and v depend on the \max encoding size of a constraint of the LP
- a constraint of (D'), e.g. x⁽ⁱ⁾U^Ty ≤ −1, may require more bits than any of the constraints of (D)
 - infeasibility of (D') is not guaranteed
- Papadimitriou and Roughgarden [2008] proposed a method to overcome this issue
- Stein, Parrilo & Ozdaglar [2010] showed that it is insufficient to compute an exact CE.
 - any algorithm that outputs a mixture of product distributions with symmetry-preserving property would fail to find an exact CE.

Outline

1 Problem Formulation

2 Papadimitriou and Roughgarden's Algorithm

3 Algorithm for Exact Correlated Equilibrium

Polynomial-time Computation of Exact Correlated Equilibrium

A⊒ ▶ ∢ ∃

• We replace the Product Separation Oracle with a modified version (Purified Separation Oracle) that generates cuts corresponding to pure strategy profiles.

- We replace the Product Separation Oracle with a modified version (Purified Separation Oracle) that generates cuts corresponding to pure strategy profiles.
- Now each constraint of (D') is one of the original constraints of (D).
 - any run of ellipsoid method that is valid for (D) is also valid for (D')
 - no longer requiring special mechanism to deal with numerical issues

- We replace the Product Separation Oracle with a modified version (Purified Separation Oracle) that generates cuts corresponding to pure strategy profiles.
- Now each constraint of (D') is one of the original constraints of (D).
 - any run of ellipsoid method that is valid for (D) is also valid for (D')
 - no longer requiring special mechanism to deal with numerical issues
- A solution of (P') is a mixture of polynomial number of pure-strategy profiles.

▲ 国 ▶ | ▲ 国 ▶ |

- We replace the Product Separation Oracle with a modified version (Purified Separation Oracle) that generates cuts corresponding to pure strategy profiles.
- Now each constraint of (D') is one of the original constraints of (D).
 - any run of ellipsoid method that is valid for (D) is also valid for (D')
 - no longer requiring special mechanism to deal with numerical issues
- A solution of (P') is a mixture of polynomial number of pure-strategy profiles.

$$\begin{array}{rrrr} (P) & \to & (D) \\ \uparrow & & \downarrow \\ (P') & \leftarrow & (D') \end{array}$$

▲ 国 ▶ | ▲ 国 ▶ |

Lemma

Given any dual vector $y \ge 0$, there exists a pure strategy profile s such that $(U_s)^T y \ge 0$.

Lemma

Given any dual vector $y \ge 0$, there exists a pure strategy profile s such that $(U_s)^T y \ge 0$.

Proof.

- we know there exists a product distribution x such that $xU^Ty = 0$.
- $x[U^Ty]$ is the expected value of $(U_s)^Ty$ under distribution x, which we denote $E_{s\sim x}[(U_s)^Ty]$
- there must exist s such that $(U_s)^T y \ge x U^T y = 0$.

Lemma

Given any dual vector $y \ge 0$, there exists a pure strategy profile s such that $(U_s)^T y \ge 0$.

Proof.

- we know there exists a product distribution x such that $xU^Ty = 0$.
- $x[U^Ty]$ is the expected value of $(U_s)^Ty$ under distribution x, which we denote $E_{s\sim x}[(U_s)^Ty]$
- there must exist s such that $(U_s)^T y \ge x U^T y = 0$.

not efficiently constructive

御 と くぼ と くぼ と … ほ

Lemma

Given any dual vector $y \ge 0$, there exists a pure strategy profile s such that $(U_s)^T y \ge 0$.

Proof.

- we know there exists a product distribution x such that $xU^Ty = 0$.
- $x[U^Ty]$ is the expected value of $(U_s)^Ty$ under distribution x, which we denote $E_{s\sim x}[(U_s)^Ty]$
- there must exist s such that $(U_s)^T y \ge x U^T y = 0$.

- not efficiently constructive
- \bullet sampling from x yields approximate cutting planes

Polynomial-time Computation of Exact Correlated Equilibrium

Derandomize using the method of conditional probabilities

• Given $y \ge 0$, compute product distribution x satisfying $xU^Ty = 0$, i.e. $E_{s \sim x}[(U_s)^Ty] = 0$.

Derandomize using the method of conditional probabilities

- Given y ≥ 0, compute product distribution x satisfying xU^Ty = 0, i.e. E_{s∼x}[(U_s)^Ty] = 0.
- Por each player p,
 - pick $s_p \in S_p$ such that the conditional expectation

$$E_{s \sim x}[(U_s)^T y | s_1, \dots, s_p] \ge 0.$$

Derandomize using the method of conditional probabilities

- Given y ≥ 0, compute product distribution x satisfying xU^Ty = 0, i.e. E_{s∼x}[(U_s)^Ty] = 0.
- For each player p,
 - pick $s_p \in S_p$ such that the conditional expectation

$$E_{s \sim x}[(U_s)^T y | s_1, \dots, s_p] \ge 0.$$

- such s_p must exists because $E_{s \sim x}[(U_s)^T y | s_1, \dots, s_{p-1}] \ge 0$
- each conditional expectation can be efficiently computed using the expected utility algorithm

Derandomize using the method of conditional probabilities

- Given y ≥ 0, compute product distribution x satisfying xU^Ty = 0, i.e. E_{s∼x}[(U_s)^Ty] = 0.
- Por each player p,
 - pick $s_p \in S_p$ such that the conditional expectation

$$E_{s \sim x}[(U_s)^T y | s_1, \dots, s_p] \ge 0.$$

- such s_p must exists because $E_{s \sim x}[(U_s)^T y | s_1, \dots, s_{p-1}] \ge 0$
- each conditional expectation can be efficiently computed using the expected utility algorithm

• Output $s = (s_1, \ldots, s_p)$, and cutting plane $(U_s)^T y \leq -1$.

白 と く ヨ と く ヨ と …

Derandomize using the method of conditional probabilities

- Given y ≥ 0, compute product distribution x satisfying xU^Ty = 0, i.e. E_{s∼x}[(U_s)^Ty] = 0.
- For each player p,
 - pick $s_p \in S_p$ such that the conditional expectation

$$E_{s \sim x}[(U_s)^T y | s_1, \dots, s_p] \ge 0.$$

- such s_p must exists because $E_{s \sim x}[(U_s)^T y | s_1, \dots, s_{p-1}] \ge 0$
- each conditional expectation can be efficiently computed using the expected utility algorithm

• Output $s = (s_1, \ldots, s_p)$, and cutting plane $(U_s)^T y \leq -1$.

Can return asymmetric cuts even for symmetric games and symmetric y.

・回 と く ヨ と く ヨ と

Conclusion

- A variant of Ellipsoid Against Hope algorithm that computes an exact CE in polynomial time
 - derandomization of the Product Separation Oracle
 - as a result the algorithm is simplified
 - polynomial-sized support

Conclusion

- A variant of Ellipsoid Against Hope algorithm that computes an exact CE in polynomial time
 - derandomization of the Product Separation Oracle
 - as a result the algorithm is simplified
 - polynomial-sized support
- Directions
 - Apply to other related algorithms, e.g. Huang and Von Stengel [2008] polynomial-time algorithm for extensive-form correlated equilibria.

Conclusion

- A variant of Ellipsoid Against Hope algorithm that computes an exact CE in polynomial time
 - derandomization of the Product Separation Oracle
 - as a result the algorithm is simplified
 - polynomial-sized support
- Directions
 - Apply to other related algorithms, e.g. Huang and Von Stengel [2008] polynomial-time algorithm for extensive-form correlated equilibria.
 - Practical computation of CE

Problem Formulation Papadimitriou and Roughgarden's Algorithm Algorithm for Exact Correlated Equilibrium References

Aumann, R. (1974). Subjectivity and correlation in randomized strategies. *Journal of Mathematical Economics*, 1(1), 67–96.

- Aumann, R. (1987). Correlated equilibrium as an expression of Bayesian rationality. *Econometrica: Journal of the Econometric Society*, 1–18.
- Daskalakis, C., Fabrikant, A., & Papadimitriou, C. (2006). The game world is flat: The complexity of Nash equilibria in succinct games. *ICALP: Proceedings of the International Colloquium on Automata, Languages and Programming* (pp. 513–524).
- Gottlob, G., Greco, G., & Scarcello, F. (2005). Pure Nash equilibria: Hard and easy games. *Journal of Artificial Intelligence Research*, *24*, 357–406.
- Huang, W., & Von Stengel, B. (2008). Computing an extensive-form correlated equilibrium in polynomial time. WINE: Proceedings of the Workshop on Internet and Network Economics (pp. 506–513).
- Papadimitriou, C., & Roughgarden, T. (2008). Computing correlated equilibria in multi-player games. *Journal of the ACM*, 55(3), 14.

イロト イヨト イヨト イヨト