
Computational Problems in Multiagent Systems

by

Albert Xin Jiang

B.Sc., The University of British Columbia, 2003

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

Master of Science

in

The Faculty of Graduate Studies

(Computer Science)

The University Of British Columbia

March 31, 2006

c© Albert Xin Jiang 2006

ii

Abstract

There has been recent interest from the computer science community on multi-
agent systems, where multiple autonomous agents, each with their own utility
functions, act according to their own interests. In this thesis, we apply tech-
niques developed in other areas of CS to solve two computational problems in
multiagent systems:

Action Graph Games: Action Graph Games (AGGs), first proposed in
[Bhat and Leyton-Brown 2004], are a fully expressive game representation which
can compactly express strict and context-specific independence and anonymity
structure in players’ utility functions. We present an efficient algorithm for com-
puting expected payoffs under mixed strategy profiles. This algorithm runs in
time polynomial in the size of the AGG representation (which is itself polynomial
in the number of players when the in-degree of the action graph is bounded).
We also present an extension to the AGG representation which allows us to
compactly represent a wider variety of structured utility functions.

Learning and planning in online auction environments: There is much
active research into the design of automated bidding agents, particularly for
environments that involve multiple auctions. These settings are complex partly
because an agent’s optimal strategy depends on information about other bidder’s
preferences. When bidders’ valuation distributions are not known ex ante, ma-
chine learning techniques can be used to approximate them from historical data.
It is a characteristic feature of auctions, however, that information about some
bidders’ valuations is systematically concealed. This occurs in the sense that
some bidders may fail to bid at all because the asking price exceeds their valua-
tions, and also in the sense that a high bidder may not be compelled to reveal her
valuation. Ignoring these ”hidden bids” can introduce bias into the estimation
of valuation distributions. To overcome this problem, we proposed an EM-base
algorithm. We validate the algorithm experimentally using agents that react
to their environments both decision-theoretically and game-theoretically, using
both synthetic and real-world (eBay) datasets. We show that our approach esti-
mates bidders’ valuation distributions and the distribution over the true number
of bidders significantly more accurately than more straightforward density esti-
mation techniques. Bidding agents using the estimated distributions from our
EM approach were able to outperform bidding agents using the straightforward
estimates, in both decision-theoretic and game-theoretic settings.

iii

Contents

Abstract . ii

Contents . iii

List of Figures . v

1 Introduction . 1
1.1 Multiagent Systems . 1
1.2 Overview . 2

2 Action Graph Games . 4
2.1 Introduction . 4
2.2 Action Graph Games . 5

2.2.1 Definition . 5
2.2.2 Examples . 6
2.2.3 Size of an AGG Representation 7

2.3 Computing with AGGs . 9
2.3.1 Notation . 9
2.3.2 Computing V isi (σ−i) . 10
2.3.3 Proof of correctness . 13
2.3.4 Complexity . 14
2.3.5 Discussion . 15

2.4 AGG with Function Nodes . 16
2.4.1 Motivating Example: Coffee Shop 16
2.4.2 Function Nodes . 17
2.4.3 Representation Size . 18
2.4.4 Computing with AGGFNs 19

2.5 Applications . 21
2.5.1 Application: Computing Payoff Jacobian 21

2.6 Experiments . 23
2.6.1 Representation Size . 24
2.6.2 Expected Payoff Computation 24
2.6.3 Computing Payoff Jacobians 25
2.6.4 Finding Nash Equilibria using the Govindan-Wilson algo-

rithm . 26
2.7 Conclusions . 27

Contents iv

3 Bidding Agents for Online Auctions with Hidden Bids 29
3.1 Introduction . 29

3.1.1 Game-Theoretic and Decision-Theoretic Approaches . . . 30
3.1.2 Overview . 31

3.2 A Model of Online Auctions . 32
3.2.1 Bidding Dynamics . 32
3.2.2 Hidden Bids . 32
3.2.3 Discussion . 33

3.3 Learning the Distributions . 34
3.3.1 The Simple Approach . 34
3.3.2 EM Learning Approach 35
3.3.3 Learning Distributions in a Game-Theoretic Setting . . . 37

3.4 Constructing a Bidding Agent . 37
3.4.1 A Decision-Theoretic Approach to Repeated Auctions . . 38
3.4.2 A Game-Theoretic Approach to Bidding in Online Auc-

tions without Proxies . 40
3.5 Experiments . 44

3.5.1 Repeated Online Auctions 45
3.5.2 Online Auctions without Proxies 52

3.6 Related Work . 53
3.7 Conclusion . 55

Bibliography . 57

v

List of Figures

2.1 AGG representation of an arbitrary 3-player, 3-action game . . . 6
2.2 AGG representation of a 3-player, 3-action graphical game 6
2.3 AGG representation of the ice cream vendor game 6
2.4 Projection of the action graph. Left: action graph of the ice

cream vendor game. Right: projected action graph and action
sets with respect to the action C1. 11

2.5 A 5×6 Coffee Shop Game: Left: the AGG representation without
function nodes (looking at only the neighborhood of the a node
s). Middle: we introduce two function nodes. Right: s now has
only 3 incoming edges. 19

2.6 Comparing Representation Sizes of the Coffee Shop Game (log-
scale). Left: 5×5 grid with 3 to 16 players. Right: 4-player r×5
grid with r varying from 3 to 10. 24

2.7 Running times for payoff computation in the Coffee Shop Game.
Left: 5 × 5 grid with 3 to 16 players. Right: 4-player r × 5 grid
with r varying from 3 to 10. 25

2.8 Running times for Jacobian computation in the Coffee Shop Game.
Left: 5 × 5 grid with 3 to 10 players. Right: 4-player r × 5 grid
with r varying from 3 to 10. 26

2.9 Ratios of Running times for the Govindan-Wilson algorithm in
the Coffee Shop Game. Left: 4×4 grid with 3 to 5 players. Right:
4-player r × 4 grid with r varying from 3 to 9. The error bars
indicate standard deviation over 10 random initial perturbations.
The constant lines at 1.0 indicating equal running times are also
shown. 27

3.1 An example of the bidding process of an auction with 7 potential
bidders. 33

3.2 Results for Data Set 1, Distribution Estimation: distribution of
bids f(x) (left); distribution of highest bids f 1(x) (right). 47

3.3 Results for Data Set 1, Bidding: bidding strategies in the first
auction (left); box plot of payoff regrets of the two approaches
(right). 47

3.4 Box plot of expected payoff regrets for overlapping auctions . . . 48
3.5 Results for Data Set 2: Linear relationship between the mean of

f(x|a) and a (left). Box plot of payoff regrets (right). 48

List of Figures vi

3.6 Results for Data Set 3: Distribution f(x) (top-left). Distribution
g(m) (top-right). Distribution f 1(x) (bottom-left). Box plot of
payoff regrets (bottom-right). 50

3.7 Box plot of payoff regrets on the eBay Data Set 52
3.8 Results for Online Auctions without Proxies: the value distri-

butions f(v) (left); the distributions of number of bidders g(m)
(right). 53

3.9 Results for Online Auctions without Proxies: box plot of epsilon-
equilibria using the simple and EM approaches 54

vii

Glossary

Cs(m) the contribution of action s to node m, 20
D a configuration, 5
D(s) the number of players that chose action s, 5

D(s) a configuration over ν(s), 5
G the action graph, 5
N the set of players, 5
S the set of distinct actions; also the set of action

nodes in the action graph, 5
Si player i’s set of actions, 5
V isi(σ−i) expected utility to agent i for playing pure strat-

egy si, given that all other agents play the mixed
strategy profile σ−i, 10

∆ the set of configurations, 5
∆(s,i) the set of configurations over ν(s) given that

player i has played s, 5
∆(si,i)(σ−i) the set of configurations over ν(si) that have

positive probability of occurring under the
mixed strategy (si, σ−i), 14

∆(s) the set of configurations over ν(s) given that
some player has played s, 5

Σ set of all mixed strategy profiles, 9
Σi set of all mixed strategies of player i, 9
s an action profile, 5
I the maximum in-degree of the action graph, 7
σ mixed strategy profile, 9
σi mixed strategy of player i, 9
∇V i,jsi,sj (σ) payoff Jacobian’s entry at row (i, si) and column

(j, sj), 21
ν the neighbor relation of the action graph. ν(s)

is the set of neighbors of s., 5
n the number of players, 5
si an action of player i, 5
u utility function , 5

Glossary viii

us the utility function associated with action s;
stores utilities given that the current player has
played s, 6

1

Chapter 1

Introduction

1.1 Multiagent Systems

There has been recent interest from the computer science community on (non-
cooperative) multiagent systems, where multiple autonomous agents, each with
their own utility functions, act according to their own interests. These situations
can be modeled as games, and analyzed using game theory. Game theory has
received a great deal of study, and is perhaps the dominant paradigm in microe-
conomics. However, the computational aspects of game theory have received
relatively less attention until recently.

The intersection of computer science and game theory includes many exciting
topics. One line of research is to apply game theory to resource allocation prob-
lems in computing systems. Internet-based systems, due to their distributed and
multiagent nature, are a popular area for game-theoretic analysis. Examples in-
clude network routing [Roughgarden and Tardos 2004], CPU scheduling [Regev
and Nisan 1998; Waldspurger et al. 1992], peer-to-peer file sharing [Golle et al.
2001] and search engines’ ranking systems [Altman and Tennenholtz 2005].

Another line of research, which includes the topic of this thesis, is to ap-
ply CS techniques to analyze and solve computational problems in multiagent
systems. One type of problems is the computation of game-theoretic solutions
such as Nash equilibria (and restricted versions such as pure-strategy equilibria
and social welfare maximizing equilibria) and correlated equilibria, given a de-
scription of the game. Recently, complexity analysis from theoretical computer
science has been used to analyze these problems [Conitzer and Sandholm 2003;
Goldberg and Papadimitriou 2005; Daskalakis et al. 2005; Chen and Deng 2005].
There are also some recent research on practical algorithms for computing Nash
equilibria [Koller et al. 1994; Porter et al. 2004].

The representation of games has also received recent interest. Tradition-
ally, simultaneous-move games are represented in normal form, and dynamic
games are represented in extensive form. However, for large games, these rep-
resentations are impractically large, and any non-trivial computation on these
representations would be intractable. Fortunately, most large games of any
practical interest have highly structured payoff functions, thus it is possible to
compactly represent them. One influential approach is to represent structure
in payoffs as graphs. AI researchers have used graphs to represent structure
in joint probability distributions (as Bayes nets or Markov random fields) with
great success. For multiagent systems, several graphical representations have
been proposed to represent the (strict) independence between players’ payoffs;

Chapter 1. Introduction 2

this includes multi-agent influence diagrams [Koller and Milch 2001] for dynamic
games and graphical games [Kearns et al. 2001] for simultaneous-move games.
Another type of graphical representations focus on context-specific independen-
cies in agents’ utility functions – that is, games in which agents’ abilities to
affect each other depend on the actions they choose. This includes local effect
games [Leyton-Brown and Tennenholtz 2003] and action graph games [Bhat and
Leyton-Brown 2004]; the latter is the topic of Chapter 2 of this thesis.

Another type of computational problems often encountered in multiagent
systems are learning problems. Game-theoretic solution concepts such as Nash
equilibria assume that the players have perfect knowledge about the game be-
ing played, and are perfectly rational. In practice these conditions often do not
hold. How should agents act in such environments? This is often cast as a
multiagent reinforcement learning problem: instead of assuming other agents to
be perfectly rational, assume instead that agent tries to learn an optimal policy
through repeated interaction with the other players. Many approaches have
been proposed [Bowling and Veloso 2001; Bowling 2004; Powers and Shoham
2004]. Most of these multiagent reinforcement learning approaches study set-
tings of repeated games where players know the game being played. However,
in many situations such as auctions, each player does not know the complete
payoff function, and each player has certain private information about the pay-
offs. In the case of auctions, the private information are players’ valuations on
the item(s) being auctioned. If we know the joint probability distribution of
the valuations, we can formulate the situation as a Bayesian game. Usually we
do not know the distribution of valuations; instead the bidding history of pre-
vious auctions are available, and we could try to estimate the distribution from
data. This machine learning problem is an essential component of the problem
of building automated bidding agents, which has attracted interest partly due
to the Trading Agent Competitions (TAC-Classic and TAC Supply Chain Man-
agement) [Wellman et al. 2002]. In Chapter 3 of this thesis, we look at another
auction setting with practical interest, namely online auction systems such as
the popular eBay. Learning the distributions in this setting presents unique
challenges due to the fact that not all bids are shown in the bidding history.

1.2 Overview

My thesis contains results from two research projects on computational problems
in game theory and multiagent systems. One is a way of compactly representing
games in general, and the other is about a learning problem in a specific kind of
multiagent systems, namely online auction environments. The two projects may
seem to be about vastly different things, but a common theme is that in both
cases we apply techniques developed in other areas of CS (graphical models
and dynamic programming in the former, and the Expectation-Maximization
algorithm in the latter) to solve computational problems in multiagent systems.

Chapter 2 is about Action Graph Games (AGGs). First proposed in [Bhat
and Leyton-Brown 2004], AGGs are a graphical representation of games that

Chapter 1. Introduction 3

exploits the context-specific independence and anonymity structure in many
games. Using AGGs we are able to compactly represent large structured games
with many players, and furthermore efficiently compute expected payoffs under
mixed strategies, which is an essential step in many game-theoretic computa-
tions, e.g. best response, Nash equilibria and correlated equilibria. In this
thesis, we make several significant improvements to to results in [Bhat and
Leyton-Brown 2004]. First we significantly improved the algorithm for com-
puting expected payoffs of AGGs. Now our dynamic programming algorithm
is able to compute expected payoffs in polynomial time with respect to the
size of the representation, whereas in [Bhat and Leyton-Brown 2004] a poly-
nomial time algorithm was found for only symmetric games with symmetric
strategies. Furthermore, we extended the AGG representation to include func-
tion nodes in the action graph. This allows us to compactly represent a larger
class of context-specific independence structure in games. Results of computa-
tional experiments on structured games confirm our theoretical predictions of
compactness and computational speedup.

In Chapter 3 we try to solve the problem of learning bidders’ valuation
and number distributions in online auction environments. There is much active
research into the design of automated bidding agents, particularly for environ-
ments that involve multiple auctions. These settings are complex partly because
an agent’s optimal strategy depends on information about other bidder’s pref-
erences. When bidders’ valuation distributions are not known ex ante, machine
learning techniques can be used to approximate them from historical data. It is
a characteristic feature of auctions, however, that information about some bid-
ders’ valuations is systematically concealed. This occurs in the sense that some
bidders may fail to bid at all because the asking price exceeds their valuations,
and also in the sense that a high bidder may not be compelled to reveal her val-
uation. Ignoring these ”hidden bids” can introduce bias into the estimation of
valuation distributions. To overcome this problem, we proposed an EM-based
algorithm. We validate the algorithm experimentally using agents that react
to their environments both decision-theoretically and game-theoretically, using
both synthetic and real-world (eBay) datasets. We show that our approach esti-
mates bidders’ valuation distributions and the distribution over the true number
of bidders significantly more accurately than more straightforward density esti-
mation techniques. Bidding agents using the estimated distributions from our
EM approach were able to outperform bidding agents using the straightforward
estimates, in both decision-theoretic and game-theoretic settings.

4

Chapter 2

Action Graph Games

2.1 Introduction

Game-theoretic1 models have recently been very influential in the computer sci-
ence community. In particular, simultaneous-action games have received con-
siderable study, which is reasonable as these games are in a sense the most
fundamental. In order to analyze these models, it is often necessary to com-
pute game-theoretic quantities ranging from expected utility to Nash equilibria.

Most of the game theoretic literature presumes that simultaneous-action
games will be represented in normal form. This is problematic because quite
often games of interest have a large number of players and a large set of action
choices. In the normal form representation, we store the game’s payoff function
as a matrix with one entry for each player’s payoff under each combination of all
players’ actions. As a result, the size of the representation grows exponentially
with the number of players. Even if we had enough space to store such games,
most of the computations we’d like to perform on these exponential-sized objects
take exponential time.

Fortunately, most large games of any practical interest have highly struc-
tured payoff functions, and thus it is possible to represent them compactly.
(Intuitively, this is why humans are able to reason about these games in the
first place: we understand the payoffs in terms of simple relationships rather
than in terms of enormous look-up tables.) One influential class of representa-
tions exploit strict independencies between players’ utility functions; this class
include graphical games [Kearns et al. 2001], multi-agent influence diagrams
[Koller and Milch 2001], and game nets [LaMura 2000]. A second approach
to compactly representing games focuses on context-specific independencies in
agents’ utility functions – that is, games in which agents’ abilities to affect each
other depend on the actions they choose. Since the context-specific indepen-
dencies considered here are conditioned on actions and not agents, it is often
natural to also exploit anonymity in utility functions, where each agent’s utili-
ties depend on the distribution of agents over the set of actions, but not on the
identities of the agents. Examples include congestion games [Rosenthal 1973]
and local effect games (LEGs) [Leyton-Brown and Tennenholtz 2003]. Both of
these representations make assumptions about utility functions, and as a result
cannot represent arbitrary games. Bhat and Leyton-Brown [2004] introduced

1A version of this chapter has been submitted for publication. Jiang, A.X. and Leyton-
Brown, K. (2006) A Polynomial-Time Algorithm for Action-Graph Games. Submitted to
AAAI.

Chapter 2. Action Graph Games 5

action graph games (AGGs). Similar to LEGs, AGGs use graphs to repre-
sent the context-specific independencies of agents’ utility functions, but unlike
LEGs, AGGs can represent arbitrary games. Bhat & Leyton-Brown proposed
an algorithm for computing expected payoffs using the AGG representation.
For AGGs with bounded in-degree, their algorithm is exponentially faster than
normal-form-based algorithms, yet still exponential in the number of players.

In this chapter we make several significant improvements to results in [Bhat
and Leyton-Brown 2004]. In Section 2.3, we present an improved algorithm
for computing expected payoffs. Our new algorithm is able to better exploit
anonymity structure in utility functions. For AGGs with bounded in-degree, our
algorithm is polynomial in the number of players. In Section 2.4, we extend
the AGG representation by introducing function nodes. This feature allows
us to compactly represent a wider range of structured utility functions. We
also describe computational experiments in Section 2.6 which confirm our
theoretical predictions of compactness and computational speedup.

2.2 Action Graph Games

2.2.1 Definition

An action-graph game (AGG) is a tuple 〈N,S, ν, u〉. Let N = {1, . . . , n} denote
the set of agents. Denote by S =

∏
i∈N Si the set of action profiles, where

∏
is

the Cartesian product and Si is agent i’s set of actions. We denote by si ∈ Si
one of agent i’s actions, and s ∈ S an action profile.

Agents may have actions in common. Let S ≡ ⋃i∈N Si denote the set of
distinct actions choices in the game. Let ∆ denote the set of configurations of
agents over actions. A configuration D ∈ ∆ is an ordered tuple of |S| integers
(D(s), D(s′), . . .), with one integer for each action in S. For each s ∈ S, D(s)
specifies the number of agents that chose action s ∈ S. Let D : S 7→ ∆ be the
function that maps from an action profile s to the corresponding configuration
D. These shared actions express the game’s anonymity structure: agent i’s
utility depends only on her action si and the configuration D(s).

Let G be the action graph: a directed graph having one node for each action
s ∈ S. The neighbor relation is given by ν : S 7→ 2S . If s′ ∈ ν(s) there is
an edge from s′ to s. Let D(s) denote a configuration over ν(s), i.e. D(s) is a
tuple of |ν(s)| integers, one for each action in ν(s). Intuitively, agents are only
counted in D(s) if they take an action which is an element of ν(s). ∆(s) is the set
of configurations over ν(s) given that some player has played s.2 Similarly we
define D(s) : S 7→ ∆(s) which maps from an action profile to the corresponding
configuration over ν(s).

The action graph expresses context-specific independencies of utilities of the
game: ∀i ∈ N , if i chose action si ∈ S, then i’s utility depends only on the

2If action s is in multiple players’ action sets (say players i, j), and these action sets do
not completely overlap, then it is possible that the set of configurations given that i played s
(denoted ∆(s,i)) is different from the set of configurations given that j played s. ∆(s) is the
union of these sets of configurations.

Chapter 2. Action Graph Games 6

2
31

5

6

4

8

9

7

2
31

2
31

5

6

4

8

9

7

Figure 2.1: AGG rep-
resentation of an arbi-
trary 3-player, 3-action
game

2

3

1

5

4

6

8

9

7

Figure 2.2: AGG rep-
resentation of a 3-
player, 3-action graph-
ical game

V1 V3

C 4

V4V2

C 3C 2C 1

Figure 2.3: AGG rep-
resentation of the ice
cream vendor game

numbers of agents who chose actions connected to s, which is the configuration
D(si)(s). In other words, the configuration of actions not in ν(si) does not affect
i’s utility.

We represent the agents’ utilities using a tuple of |S| functions u ≡ (us, us
′
, . . .),

one for each action s ∈ S. Each us is a function us : ∆(s) 7→ �
. So if agent

i chose action s, and the configuration over ν(s) is D(s), then agent i’s utility
is us(D(s)). Observe that all agents have the same utility function, i.e. con-
ditioned on choosing the same action s, the utility each agent receives does
not depend on the identity of the agent. For notational convenience, we define
u(s,D(s)) ≡ us(D(s)) and ui(s) ≡ u(si,D(si)(s)).

2.2.2 Examples

Any arbitrary game can be encoded as an AGG as follows. Create a unique node
si for each action available to each agent i. Thus ∀s ∈ S, D(s) ∈ {0, 1}, and
∀i, ∑s∈Si D(s) must equal 1. The distribution simply indicates each agent’s
action choice, and the representation is no more or less compact than the normal
form (see Section 2.2.3 for a detailed analysis).

Example 1. Figure 2.1 shows an arbitrary 3-player, 3-action game encoded
as an AGG. As always, nodes represent actions and directed edges represent
membership in a node’s neighborhood. The dotted boxes represent the players’
action sets: player 1 has actions 1, 2 and 3; etc. Observe that there is always
an edge between pairs of nodes belonging to different action sets, and that there
is never an edge between nodes in the same action set.

In a graphical game [Kearns et al. 2001] nodes denote agents and there is
an edge connecting each agent i to each other agent whose actions can affect
i’s utility. Each agent then has a payoff matrix representing his local game
with neighboring agents; this representation is more compact than normal form
whenever the graph is not a clique. Graphical games can be represented as
AGGs by replacing each node i in the graphical game by a distinct cluster of
nodes Si representing the action set of agent i. If the graphical game has an

Chapter 2. Action Graph Games 7

edge from i to j, create edges so that ∀si ∈ Si, ∀sj ∈ Sj , si ∈ ν(sj). The
resulting AGG representations are as compact as the original graphical game
representations.

Example 2. Figure 2.2 shows the AGG representation of a graphical game
having three nodes and two edges between them (i.e., player 1 and player 3 do
not directly affect each others’ payoffs). The AGG may appear more complex
than the graphical game; in fact, this is only because players’ actions are made
explicit.

The AGG representation becomes even more compact when agents have
actions in common, with utility functions depending only on the number of
agents taking these actions rather than on the identities of the agents.

Example 3. The action graph in Figure 2.3 represents a setting in which n ven-
dors sell chocolate or vanilla ice creams, and must choose one of four locations
along a beach. There are three kinds of vendors: nC chocolate (C) vendors, nV
vanilla vendors, and nW vendors that can sell both chocolate and vanilla, but
only on the west side. Chocolate (vanilla) vendors are negatively affected by the
presence of other chocolate (vanilla) vendors in the same or neighboring loca-
tions, and are simultaneously positively affected by the presence of nearby vanilla
(chocolate) vendors. Note that this game exhibits context-specific independence
without any strict independence, and that the graph structure is independent of
n.

Other examples of compact AGGs that cannot be compactly represented as
graphical games include: location games, role formation games, traffic routing
games, product placement games and party affiliation games.

2.2.3 Size of an AGG Representation

We have claimed that action graph games provide a way of representing games
compactly. But what exactly is the size of an AGG representation? And how
does this size grow as the number of agents n grows? From the definition of
AGG in Section 2.2.1, we observe that we need the following to completely
specify an AGG:

• The set of agents N = {1, . . . , n}. This can be specified by the integer n.

• The set of actions S.

• Each agent’s action set Si ⊆ S.

• The action graph G. The set of nodes is S, which is already specified. The
neighbor relation ν can be straightforwardly represented as neighbor lists:
for each node s ∈ S we specify its list of neighbors ν(s) ⊆ S. The space
required is

∑
s∈S |ν(s)|, which is bounded by |S|I, where I = maxs |ν(s)|,

i.e. the maximum in-degree of the action graph.

Chapter 2. Action Graph Games 8

• For each action s, the utility function us : ∆(s) 7→ �
. We need to specify

a utility value for each distinct configuration D(s) ∈ ∆(s). The set of
configurations ∆(s) can be derived from the action graph, and can be
sorted in lexicographical order. So we do not need to explicitly specify
∆(s); we can just specify a list of |∆(s)| utility values that correspond
to the (ordered) set of configurations.3 |∆(s)|, the number of distinct
configurations over ν(s), in general does not have a closed-form expression.
Instead, we consider the operation of extending all agents’ action sets via
∀i : Si 7→ S. Now the number of configurations over ν(s) is an upper
bound on |∆(s)|. The bound is the number of (ordered) combinatorial
compositions of n−1 (since one player has already chosen s) into |ν(s)|+1

nonnegative integers, which is (n−1+|ν(s)|)!
(n−1)!|ν(s)|! . Then the total space required

for the utilities is bounded from above by |S| (n−1+I)!
(n−1)!I! .

Therefore the size of an AGG representation is dominated by the size of its utility

functions, which is bounded by |S| (n−1+I)!
(n−1)!I! . If I is bounded by a constant as

n grows, the representation size grows like O(|S|nI), i.e. polynomially with
respect to n.

The AGG representation achieves compactness by exploiting two types of
structure in the utilities:

1. Anonymity: agent i’s utility depends only on her action si and the
configuration (i.e. number of players that play each action), but not on
the identities of the players. Since the number of configurations |∆| is
usually less than the number of action profiles |S| =

∏
i |Si| and is never

greater, we need fewer numbers to represent the utilities in AGG compared
to the normal form.

2. Context-specific independence: for each node s ∈ S, the utility func-
tion us only needs to be defined over ∆(s). Since |∆(s)| is usually less
than |∆| and is never greater, this further reduces the numbers we need
to specify.

For each AGG, there exists a unique induced normal form representation
with the same set of players and |Si| actions for each i; its utility function is a
matrix that specifies each player i’s payoff for each possible action profile s ∈ S.
This implies a space complexity of n

∏n
i=1 |Si|. When Si ≡ S for all i, this

becomes n|S|n, which grows exponentially with respect to n. The number of
payoff values stored in an AGG representation is always less or equal to the
number of payoff values in the induced normal form representation. This is
because for each entry in the normal form which represents i’s utility under
action profile s, there exists a unique action profile s in the AGG with the

3This is the most compact way of representing the utility functions, but does not provide
easy random access of the utilities. Therefore, when we want to do computation using AGG,
we may convert each utility function us to a data structure that efficiently implements a
mapping from sequences of integers to (floating-point) numbers, (e.g. tries, hash tables or
Red-Black trees), with space complexity in the order of O(I|∆(s)|).

Chapter 2. Action Graph Games 9

corresponding action for each player. This s induces a unique configurationD(s)
over the AGG’s action nodes. By construction of the AGG utility functions,
D(s) together with si determines a unique utility usi(D(si)(s)) in the AGG.
Furthermore, there are no entries in the AGG utility functions that do not
correspond to any action profile (si, s−i) in the normal form. This means that
there exists a many-to-one mapping from entries of normal form to utilities in the
AGG. Of course, the AGG representation has the extra overhead of representing
the action graph, which is bounded by |S|I. But asymptotically, AGG’s space
complexity is never worse than the equivalent normal form.

2.3 Computing with AGGs

One of the main motivations of compactly representing games is to do efficient
computation on the games. We have introduced AGG as a compact represen-
tation of games; now we would like to exploit the compactness of the AGG
representation when we do computation. We focus on the computational task
of computing expected payoffs under a mixed strategy profile. Besides being
important in itself, this task is an essential component of many game-theoretic
applications, e.g. computing best responses, Govindan and Wilson’s continu-
ation methods for finding Nash equilibria [Govindan and Wilson 2003; Govin-
dan and Wilson 2004], the simplicial subdivision algorithm for finding Nash
equilibria [van der Laan et al. 1987], and finding correlated equilibria using
Papadimitriou’s algorithm [Papadimitriou 2005].

Besides exploiting the compactness of the representation, we would also like
to be able to exploit the fact that quite often the mixed strategy profile given
will have small support. The support of a mixed strategy σi is the set of pure
strategies played with positive probability (i.e. σi(si) > 0). Quite often games
have Nash equilibria with small support. Porter et al. [2004] proposed algo-
rithms that explicitly search for Nash equilibria with small support. In other
algorithms for computing Nash equilibria such as Govindan-Wilson and sim-
plicial subdivision, quite often we will also be computing expected payoffs for
mixed strategy profiles with small support. Our algorithm appropriately ex-
ploits strategy profiles with small supports.

2.3.1 Notation

Let ϕ(X) denote the set of all probability distributions over a set X . Define
the set of mixed strategies for i as Σi ≡ ϕ(Si), and the set of all mixed strategy
profiles as Σ ≡ ∏i∈N Σi. We denote an element of Σi by σi, an element of Σ
by σ, and the probability that i plays action s as σi(s).

Define the expected utility to agent i for playing pure strategy si, given that
all other agents play the mixed strategy profile σ−i, as

V isi(σ−i) ≡
∑

s−i∈S−i

ui(si, s−i) Pr(s−i|σ−i). (2.1)

Chapter 2. Action Graph Games 10

where Pr(s−i|σ−i) =
∏
j 6=i σj(sj) is the probability of s−i under the mixed

strategy σ−i.
The set of i’s pure strategy best responses to a mixed strategy profile σ−i

is arg maxs V
i
s (σ−i), and hence the full set of i’s pure and mixed strategy best

responses to σ−i is

BRi(σ−i) ≡ ϕ(arg max
s

V is (σ−i)). (2.2)

A strategy profile σ is a Nash equilibrium iff

∀i ∈ N, σi ∈ BRi(σ−i). (2.3)

2.3.2 Computing V i
si

(σ−i)

Equation (2.1) is a sum over the set S−i of action profiles of players other than
i. The number of terms is

∏
j 6=i |Sj |, which grows exponentially in n. Thus

Equation (2.1) is an exponential time algorithm for computing V i
si(σ−i). If we

were using the normal form representation, there really would be |S−i| different
outcomes to consider, each with potentially distinct payoff values, so evaluation
Equation (2.1) is the best we could do for computing V i

si .
Can we do better using the AGG representation? Since AGGs are fully

expressive, representing a game without any structure as an AGG would not
give us any computational savings compared to the normal form. Instead, we
are interested in structured games that have a compact AGG representation.
In this section we present an algorithm that given any i, si and σ−i, computes
the expected payoff V isi (σ−i) in time polynomial with respect to the size of the
AGG representation. In other words, our algorithm is efficient if the AGG is
compact, and requires time exponential in n if it is not. In particular, recall
that for classes of AGGs whose in-degrees are bounded by a constant, their sizes
are polynomial in n. As a result our algorithm will be polynomial in n for such
games.

First we consider how to take advantage of the context-specific independence
structure of the AGG, i.e. the fact that i’s payoff when playing si only depends
on the configurations in the neighborhood of i. This allows us to project the
other players’ strategies into smaller action spaces that are relevant given si.
This is illustrated in Figure 2.4, using the ice cream vendor game (Figure 2.3).
Intuitively we construct a graph from the point of view of an agent who took a
particular action, expressing his indifference between actions that do not affect
his chosen action. This can be thought of as inducing a context-specific graphical
game. Formally, for every action s ∈ S define a reduced graph G(s) by including
only the nodes ν(s) and a new node denoted ∅. The only edges included in G(s)

are the directed edges from each of the nodes ν(s) to the node s. Player j’s

action sj is projected to a node s
(s)
j in the reduced graph G(s) by the following

mapping:

s
(s)
j ≡

{
sj sj ∈ ν(s)
∅ sj 6∈ ν(s)

. (2.4)

Chapter 2. Action Graph Games 11

V1 V3

C 4

V4V2

C 3C 2C 1

V1 V2

C 2C 1

∅

V1 V2

C 2C 1

∅

Figure 2.4: Projection of the action graph. Left: action graph of the ice cream
vendor game. Right: projected action graph and action sets with respect to the
action C1.

In other words, actions that are not in ν(s) (and therefore do not affect the
payoffs of agents playing s) are projected to ∅. The resulting projected action

set S
(s)
j has cardinality at most min(|Sj |, |ν(s)|+ 1).

We define the set of mixed strategies on the projected action set S
(s)
j by

Σ
(s)
j ≡ ϕ(S

(s)
j). A mixed strategy σj on the original action set Sj is projected

to σ
(s)
j ∈ Σ

(s)
j by the following mapping:

σ
(s)
j (s

(s)
j) ≡

{
σj(sj) sj ∈ ν(s)∑

s′∈Si\ν(s) σj(s
′) s

(s)
j = ∅ . (2.5)

So given si and σ−i, we can compute σ
(si)
−i in O(n|S|) time in the worst case.

Now we can operate entirely on the projected space, and write the expected
payoff as

V isi(σ−i) =
∑

s
(si)

−i ∈S
(si)

−i

u(si,D(si)(si, s−i)) Pr(s
(si)
−i |σ

(si)
−i)

where Pr(s
(si)
−i |σ

(si)
−i) =

∏
j 6=i σ

(si)
j (s

(si)
j). The summation is over S

(si)
−i , which in

the worst case has (|ν(si)|+ 1)(n−1) terms. So for AGGs with strict or context-
specific independence structure, computing V isi(σ−i) this way is much faster
than doing the summation in (2.1) directly. However, the time complexity of
this approach is still exponential in n.

Next we want to take advantage of the anonymity structure of the AGG.
Recall from our discussion of representation size that the number of distinct
configurations is usually smaller than the number of distinct pure action profiles.
So ideally, we want to compute the expected payoff V i

si(σ−i) as a sum over the

Chapter 2. Action Graph Games 12

possible configurations, weighted by their probabilities:

V isi(σ−i) =
∑

D(si)∈∆(si,i)

ui(si, D
(si))Pr(D(si)|σ(si)) (2.6)

where σ(si) ≡ (si, σ
(si)
−i) and

Pr(D(si)|σ(si)) =
∑

s:D(si)(s)=D(si)

N∏

j=1

σj(sj) (2.7)

which is the probability of D(si) given the mixed strategy profile σ(si). Equation
(2.6) is a summation of size |∆(si,i)|, the number of configurations given that
i played si, which is polynomial in n if I is bounded. The difficult task is to
compute Pr(D(si)|σ(si)) for all D(si) ∈ ∆(si,i), i.e. the probability distribution
over ∆(si,i) induced by σ(si). We observe that the sum in Equation (2.7) is over
the set of all action profiles corresponding to the configuration D(si). The size
of this set is exponential in the number of players. Therefore directly computing
the probability distribution using Equation (2.7) would take exponential time
in n. Indeed this is the approach proposed in [Bhat and Leyton-Brown 2004].

Can we do better? We observe that the players’ mixed strategies are inde-
pendent, i.e. σ is a product probability distribution σ(s) =

∏
i σi(si). Also,

each player affects the configuration D independently. This structure allows us
to use dynamic programming (DP) to efficiently compute the probability dis-
tribution Pr(D(si)|σ(si)). The intuition behind our algorithm is to apply one
agent’s mixed strategy at a time. In other words, we add one agent at a time

to the action graph. Let σ
(si)
1...k denote the projected strategy profile of agents

{1, . . . , k}. Denote by ∆
(si)
k the set of configurations induced by actions of

agents {1, . . . , k}. Similarly denote D
(si)
k ∈ ∆

(si)
k . Denote by Pk the probability

distribution on ∆
(si)
k induced by σ

(si)
1...k, and by Pk [D] the probability of configu-

ration D. At iteration k of the algorithm, we compute Pk from Pk−1 and σ
(si)
k .

After iteration n, the algorithm stops and returns Pn. The pseudocode of our
DP algorithm is shown as Algorithm 1.

Each D
(si)
k is represented as a sequence of integers, so Pk is a mapping from

sequences of integers to real numbers. We need a data structure to manipulate
such probability distributions over configurations (sequences of integers) which
permits quick lookup, insertion and enumeration. An efficient data structure
for this purpose is a trie. Tries are commonly used in text processing to store
strings of characters, e.g. as dictionaries for spell checkers. Here we use tries
to store strings of integers rather than characters. Both lookup and insertion
complexity is linear in |ν(si)|. To achieve efficient enumeration of all elements
of a trie, we store the elements in a list, in the order of their insertions.

Chapter 2. Action Graph Games 13

Algorithm 1 Computing the induced probability distribution Pr(D(si)|σ(si)).

Algorithm ComputeP
Input: si, σ

(si)

Output: Pn, which is the distribution Pr(D(si)|σ(si)) represented as a trie.

D
(si)
0 = (0, . . . , 0)

P0[D
(si)
0] = 1.0 // Initialization: ∆

(si)
0 = {D(si)

0 }
for k = 1 to n do

Initialize Pk to be an empty trie

for all D
(si)
k−1 from Pk−1 do

for all s
(si)
k ∈ S(si)

k such that σ
(si)
k (s

(si)
k) > 0 do

D
(si)
k = D

(si)
k−1

if s
(si)
k 6= ∅ then

D
(si)
k (s

(si)
k) += 1 // Apply action s

(si)
k

end if
if Pk[D

(si)
k] does not exist yet then

Pk[D
(si)
k] = 0.0

end if
Pk[D

(si)
k] += Pk−1[D

(si)
k−1]× σ(si)

k (s
(si)
k)

end for
end for

end for
return Pn

2.3.3 Proof of correctness

It is straightforward to see that Algorithm 1 is computing the following recur-
rence in iteration k:

∀Dk ∈ ∆
(si)
k , Pk[Dk] =

∑

Dk−1,s
(si)

k :D(si)(Dk−1,s
(si)

k)=Dk

Pk−1[Dk−1]× σ(si)
k (s

(si)
k)

(2.8)

where D(si)(Dk−1, s
(si)
k) denotes the configuration resulting from applying k’s

projected action s
(si)
k to the configuration Dk−1 ∈ ∆

(si)
k .

On the other hand, the probability distribution on ∆
(si)
k induced by σ1...k is

by definition

Pr(Dk|σ1...k) =
∑

s1...k:D(si)(s1...k)=Dk

k∏

j=1

σj(sj) (2.9)

Now we want to prove that our DP algorithm is indeed computing the correct
probability distribution, i.e. Pk[Dk] as defined by Equation 2.8 is equal to
Pr(Dk|σ1...k).

Chapter 2. Action Graph Games 14

Theorem 1. For all k, and for all Dk ∈ ∆
(si)
k , Pk [Dk] = Pr(Dk|σ1...k).

Proof by induction on k. Base case: Applying Equation (2.8) for k = 1, it is

straightforward to verify that P1[D1] = Pr(D1|σ1) for all D1 ∈ ∆
(si)
1 .

Inductive case: Now assume Pk−1[Dk−1] = Pr(Dk−1|σ1...k−1) for allDk−1 ∈
∆

(si)
k−1.

Pk[Dk] =
∑

Dk−1, sk :
D(Dk−1, sk) = Dk

Pk−1[Dk−1]× σk(sk) (2.10)

=
∑

Dk−1, sk :
D(Dk−1, sk) = Dk

σk(sk)×

 ∑

s1...k−1:D(s1...k−1)=Dk−1

k−1∏

j=1

σj(sj)

(2.11)

=
∑

Dk−1,sk:D(Dk−1,sk)=Dk

 ∑

s1...k−1:D(s1...k−1)=Dk−1

k∏

j=1

σj(sj)

 (2.12)

=
∑

s1...k−1

∑

sk

∑

Dk−1

1[D(Dk−1,sk)=Dk] · 1[D(s1...k−1)=Dk−1] ·
k∏

j=1

σj(sj)

(2.13)

=
∑

s1...k

∑

Dk−1

1[D(Dk−1,sk)=Dk] · 1[D(s1...k−1)=Dk−1]

 ·

k∏

j=1

σj(sj) (2.14)

=
∑

s1...k

1[D(s1...k)=Dk]

k∏

j=1

σj(sj) (2.15)

=
∑

s1...k :D(s1...k)=Dk

k∏

j=1

σj(sj) (2.16)

= Pr(Dk|σ1...k) (2.17)

Note that from (2.13) to (2.14) we use the fact that given an action pro-

file s1...k−1, there is a unique configuration Dk−1 ∈ ∆
(si)
k−1 such that Dk−1 =

D(si)(s1...k−1).

2.3.4 Complexity

Our algorithm for computing V isi(σ−i) consists of first computing the projected
strategies using (2.5), then following Algorithm 1, and finally doing the weighted
sum given in Equation (2.6). Let ∆(si,i)(σ−i) denote the set of configurations
over ν(si) that have positive probability of occurring under the mixed strategy

Chapter 2. Action Graph Games 15

(si, σ−i). In other words, this is the number of terms we need to add together
when doing the weighted sum in Equation (2.6). When σ−i has full support,
∆(si,i)(σ−i) = ∆(si,i). Since looking up an entry in a trie takes time linear
in the size of the key, which is |ν(si)| in our case, the complexity of doing the
weighted sum in Equation (2.6) is O(|ν(si)||∆(si,i)(σ−i)|).

Algorithm 1 requires n iterations; in iteration k, we look at all possible

combinations of D
(si)
k−1 and s

(si)
k , and in each case do a trie look-up which costs

O(|ν(si)|). Since |S(si)
k | ≤ |ν(si)| + 1, and |∆(si)

k−1| ≤ |∆(si,i)|, the complexity

of Algorithm 1 is O(n|ν(si)|2|∆(si,i)(σ−i)|). This dominates the complexity

of summing up (2.6). Adding the cost of computing σ
(s)
−i , we get the overall

complexity of expected payoff computation O(n|S|+ n|ν(si)|2|∆(si,i)(σ−i)|).
Since |∆(si,i)(σ−i)|) ≤ |∆(si,i)| ≤ |∆(si)|, and |∆(si)| is the number of payoff

values stored in payoff function usi , this means that expected payoffs can be
computed in polynomial time with respect to the size of the AGG. Furthermore,
our algorithm is able to exploit strategies with small supports which lead to a

small |∆(si,i)(σ−i)|). Since |∆(si)| is bounded by (n−1+|ν(si)|)!
(n−1)!|ν(si)|! , this implies that

if the in-degree of the graph is bounded by a constant, then the complexity of
computing expected payoffs is O(n|S|+ nI+1).

Theorem 2. Given an AGG representation of a game, i’s expected payoff
V isi(σ−i) can be computed in polynomial time with respect to the representa-
tion size, and if the in-degree of the action graph is bounded by a constant, the
complexity is polynomial in n.

2.3.5 Discussion

Of course it is not necessary to apply the agents’ mixed strategies in the order
1 . . . n. In fact, we can apply the strategies in any order. Although the number
of configurations |∆(si,i)(σ−i)| remains the same, the ordering does affect the

intermediate configurations ∆
(si)
k . We can use the following heuristic to try to

minimize the number of intermediate configurations: sort the players by the
sizes of their projected action sets, in ascending order. This would reduce the
amount of work we do in earlier iterations of Algorithm 1, but does not change
the overall complexity of our algorithm.

In fact, we do not even have to apply one agent’s strategy at a time. We
could partition the set of players into sub-groups, compute the distributions
induced by each of these sub-groups, then combine these distributions together.
Algorithm 1 can be straightforwardly extended to deal with such distributions
instead of mixed strategies of single agents. In Section 2.5.1 we apply this
approach to compute Jacobians efficiently.

Relation to Polynomial Multiplication

We observe that the problem of computing Pr(D|σ(si)) can be expressed as one
of multiplication of multivariate polynomials. For each action node s ∈ ν(si),

Chapter 2. Action Graph Games 16

let xs be a variable corresponding to s. Then consider the following expression:

n∏

k=1

σ(si)

k (∅) +
∑

sk∈Sk∩ν(si)

σk(sk)xsk

 (2.18)

This is a multiplication of n multivariate polynomials, each corresponding to one
player’s projected mixed strategy. This expression expands to a sum of |∆(si,i)|
terms. Each term can be identified by the tuple of exponents of the x variables,
(D(s), D(s′), . . .). In other words, the set of terms corresponds to the set of
configurations ∆(si,i). The coefficient of the term with exponents D ∈ ∆(si,i) is

∑

s(si):D(si)(s(si))=D

(
n∏

k=1

σ(si)(s
(si)
k)

)

which is exactly Pr(D|σ(si)) by Equation (2.7)! So the whole expression (2.18)
evaluates to ∑

D∈∆(si,i)

Pr(D|σ(si))
∏

s∈ν(si)

xD(s)
s

Thus the problem of computing Pr(D|σ(si)) is equivalent to the problem of com-
puting the coefficients in (2.18). Our DP algorithm corresponds to the strategy
of multiplying one polynomial at a time, i.e. at iteration k we multiply the
polynomial corresponding to player k’s strategy with the expanded polynomial
of 1 . . . (k − 1) that we computed in the previous iteration.

2.4 AGG with Function Nodes

There are games with certain kinds of context-specific independence structures
that AGGs are not able to exploit. In Example 4 we show a class of games with
one such kind of structure. Our solution is to extend the AGG representation
by introducing function nodes, which allows us to exploit a much wider variety
of structures.

2.4.1 Motivating Example: Coffee Shop

Example 4. In the Coffee Shop Game there are n players; each player is plan-
ning to open a new coffee shop in an downtown area, but has to decide on the
location. The downtown area is represented by a r × c grid. Each player can
choose to open the shop at any of the B ≡ rc blocks, or decide not to enter the
market. Conditioned on player i choosing some location s, her utility depends
on:

• the number of players that chose the same block,

• the number of players that chose any of the surrounding blocks, and

Chapter 2. Action Graph Games 17

• the number of players that chose any other location.

The normal form representation of this game has size n|S|n = n(B + 1)n.
Since there are no strict independencies in the utility function, the size of the
graphical game representation would be similar. Let us now represent the game
as an AGG. We observe that if agent i chooses an action s corresponding to
one of the B locations, then her payoff is affected by the configuration over
all B locations. Hence, ν(s) would consist of B action nodes corresponding to
the B locations. The action graph has in-degree I = B. Since the action sets

completely overlap, the representation size is O(|S||∆(s)|) = O(B (n−1+B)!
(n−1)!B!). If

we hold B constant, this becomes O(BnB), which is exponentially more compact
than the normal form and the graphical game representation. If we instead hold
n constant, the size of the representation is O(Bn), which is only slightly better
than the normal form and graphical game representations.

Intuitively, the AGG representation is only able to exploit the anonymity
structure in this game. However, this game’s payoff function does have context-
specific structure. Observe that us depends only on three quantities: the num-
ber of players that chose the same block, the number of players who chose
surrounding blocks, and the number of players who chose other locations. In
other words, us can be written as a function g of only 3 integers: us(D(s)) =
g(D(s),

∑
s′∈S′ D(s′),

∑
s′′∈S′′ D(s′′)) where S′ is the set of actions that sur-

rounds s and S′′ the set of actions corresponding to the other locations. Because
the AGG representation is not able to exploit this context-specific information,
utility values are duplicated in the representation.

2.4.2 Function Nodes

In the above example we showed a kind of context-specific independence struc-
ture that AGGs cannot exploit. It is easy to think of similar examples, where
us could be written as a function of a small number of intermediate param-
eters. One example is a “parity game” where us depends only on whether∑
s′∈ν(s)D(s′) is even or odd. Thus us would have just two distinct values, but

the AGG representation would have to specify a value for every configuration
D(s).

This kind of structure can be exploited within the AGG framework by in-
troducing function nodes to the action graph G. Now G’s vertices consist of
both the set of action nodes S and the set of function nodes P . We require
that no function node p ∈ P can be in any player’s action set, i.e. S ∩ P = {},
so the total number of nodes in G is |S| + |P |. Each node in G can have ac-
tion nodes and/or function nodes as neighbors. For each p ∈ P , we introduce
a function fp : ∆(p) 7→ � , where D(p) ∈ ∆(p) denotes configurations over p’s
neighbors. The configurations D are extended over the entire set of nodes, by
defining D(p) ≡ fp(D

(p)). Intuitively, D(p) are the intermediate parameters
that players’ utilities depend on.

To ensure that the AGG is meaningful, the graph G restricted to nodes in P
is required to be a directed acyclic graph (DAG). Furthermore it is required that

Chapter 2. Action Graph Games 18

every p ∈ P has at least one neighbor (i.e. incoming edge). These conditions
ensure that D(s) for all s and D(p) for all p are well-defined. To ensure that
every p ∈ P is “useful”, we also require that p has at least one out-going edge.
As before, for each action node s we define a utility function us : ∆(s) 7→ �

.
We call this extended representation (N,S, P, ν, {fp}p∈P , u) an Action Graph
Game with Function Nodes (AGGFN).

2.4.3 Representation Size

Given an AGGFN, we can construct an equivalent AGG with the same players
N and actions S and equivalent utility functions, but represented without any
function nodes. We put an edge from s′ to s in the AGG if either there is an edge
from s′ to s in the AGGFN, or there is a path from s′ to s through a chain of
function nodes. The number of utilities stored in an AGGFN is no greater than
the number of utilities in the equivalent AGG without function nodes. We can
show this by following similar arguments as before, establishing a many-to-one
mapping from utilities in the AGG representation to utilities in the AGGFN. On
the other hand, AGGFNs have to represent the functions fp, which can either be
implemented using elementary operations, or represented as mappings similar
to us. We could construct examples with huge number of function nodes, such
that the space complexity of representing {fp}p∈P would be greater than that
of the utility functions. In other words, blindly adding function nodes will not
make the representation more compact. We want to add function nodes only
when they represent meaningful intermediate parameters and hence reduce the
number of incoming edges on action nodes.

Consider our coffee shop example. For each action node s corresponding to
a location, we introduce function nodes p′s and p′′s . Let ν(p′s) consist of actions
surrounding s, and ν(p′′s) consist of actions for the other locations. Then we
modify ν(s) so that it has 3 nodes: ν(s) = {s, p′s, p′′s}, as shown in Figure 2.5. For
all function nodes p ∈ P , we define fp(D

(p)) =
∑

m∈ν(p)D(m). Now each D(s)

is a configuration over only 3 nodes. Since fp is a summation operator, |∆(s)|
is the number of compositions of n − 1 into 4 nonnegative integers, (n+2)!

(n−1)!3! =

n(n+1)(n+2)/6 = O(n3). We must therefore store O(Bn3) utility values. This
is significantly more compact than the AGG representation without function

nodes, which had a representation size of O(B (n−1+B)!
(n−1)!B!).

Remark 1. One property of the AGG representation as defined in Section 2.2.1
is that utility function us is shared by all players that have s in their action
sets. What if we want to represent games with agent-specific utility functions,
where utilities depend not only on s and D(s), but also on the identity of the
player playing s? We could split s into individual player’s actions si, sj etc., so
that each action node has its own utility function, however the resulting AGG
would not be able to take advantage of the fact that the actions si, sj affect the
other players’ utilities in the same way. Using function nodes, we are able to
compactly represent this kind of structure. We again split s into separate action
nodes si, sj , but also introduce a function node p with si, sj as its neighbors,

Chapter 2. Action Graph Games 19

Figure 2.5: A 5× 6 Coffee Shop Game: Left: the AGG representation without
function nodes (looking at only the neighborhood of the a node s). Middle: we
introduce two function nodes. Right: s now has only 3 incoming edges.

and define fp to be the summation operator fp(D
(p)) =

∑
m∈νpD(m). This

way the function node p with its configuration D(p) acts as if si and sj had
been merged into one node. Action nodes could then include p instead of both
si and sj as a neighbor. This way agents can have different utility functions,
without sacrificing representational compactness.

2.4.4 Computing with AGGFNs

Our expected-payoff algorithm cannot be directly applied to AGGFNs with
arbitrary fp. First of all, projection of strategies does not work directly, because
a player j playing an action sj 6∈ ν(s) could still affect D(s) via function nodes.
Furthermore, our DP algorithm for computing the probabilities does not work
because for an arbitrary function node p ∈ ν(s), each player would not be
guaranteed to affect D(p) independently. Therefore in the worst case we need
to convert the AGGFN to an AGG without function nodes in order to apply
our algorithm. This means that we are not always able to translate the extra
compactness of AGGFNs over AGGs into more efficient computation.

Definition 1. An AGGFN is contribution-independent (CI) if

• For all p ∈ P , ν(p) ⊆ S, i.e. the neighbors of function nodes are action
nodes.

• There exists a commutative and associative operator ∗, and for each node
s ∈ S an integer ws, such that given an action profile s, for all p ∈ P ,
D(p) = ∗i∈N :si∈ν(p) wsi .

Note that this definition entails that D(p) can be written as a function of

D(p) by collecting terms: D(p) ≡ fp(D(p)) = ∗s∈ν(p)(∗D(s)
k=1 ws).

The coffee shop game is an example of a contribution-independent AGGFN,
with the summation operator serving as ∗, and ws = 1 for all s. For the parity
game mentioned earlier, ∗ is instead addition mod 2. If we are modeling an
auction, and want D(p) to represent the amount of the winning bid, we would
let ws be the bid amount corresponding to action s, and ∗ be the max operator.

Chapter 2. Action Graph Games 20

For contribution-independent AGGFNs, it is the case that for all function
nodes p, each player’s strategy affects D(p) independently. This fact allows us
to adapt our algorithm to efficiently compute the expected payoff V i

si(σ−i). For
simplicity we present the algorithm for the case where we have one operator ∗
for all p ∈ P , but our approach can be directly applied to games with different
operators associated with different function nodes, and likewise with a different
set of ws for each operator.

We define the contribution of action s to node m ∈ S ∪ P , denoted Cs(m),

as 1 if m = s, 0 if m ∈ S \ {s}, and ∗m′∈ν(m)(∗Cs(m
′)

k=1 ws) if m ∈ P . Then it is
easy to verify that given an action profile s, D(s) =

∑n
j=1 Csj (s) for all s ∈ S

and D(p) = ∗nj=1 Csj (p) for all p ∈ P .
Given that player i played si, we define the projected contribution of ac-

tion s, denoted C
(si)
s , as the tuple (Cs(m))m∈ν(si). Note that different actions

may have identical projected contributions. Player j’s mixed strategy σj in-
duces a probability distribution over j’s projected contributions, Pr(C (si)|σj) =∑
sj :C

(si)
sj

=C(si)
σj(sj). Now we can operate entirely using the probabilities on

projected contributions instead of the mixed strategy probabilities. This is

analogous to the projection of σj to σ
(si)
j in our algorithm for AGGs without

function nodes.
Algorithm 1 for computing the distribution Pr(D(si)|σ) can be straightfor-

wardly adopted to work with contribution-independent AGGFNs: whenever we

apply player k’s contribution C
(si)
sk to D

(si)
k−1, the resulting configuration D

(si)
k is

computed componentwise as follows: D
(si)
k (m) = C

(si)
sk (m)+D

(si)
k−1(m) if m ∈ S,

and D
(si)
k (m) = C

(si)
sk (m)∗D(si)

k−1(m) if m ∈ P . Following similar complex-
ity analysis, if an AGGFN is contribution-independent, expected payoffs can be
computed in polynomial time with respect to the representation size. Applied to
the coffee shop example, since |∆(s)| = O(n3), our algorithm takes O(n|S|+n4)
time, which grows linearly in |S|.
Remark 2. We note that similar ideas are emloyed in the variable elimination
algorithms that exploit causal independence in Bayes nets [Zhang and Poole
1996]. Bayes nets are compact representations of probability distributions that
graphically represent independencies between random variables. A Bayes net is
a DAG where nodes represent random variables and edges represent direct prob-
abilistic dependence between random variables. Efficient algorithms have been
developed to compute conditional probabilities in Bayes nets, such as clique
tree propagation and variable elimination. Causal independence refers to the
situation where a node’s parents (which may represent causes) affect the node
independently. The conditional probabilities of the node can be defined using
a binary operator that can be applied to values from each of the parent vari-
ables. Zhang and Poole [1996] proposed a variable elimination algorithm that
exploits causal independence by factoring the conditional probability distribu-
tion into factors corresponding to the causes. The way factors are combined
together is similar in spirit to our DP algorithm that combines the independent
contributions of the players’ strategies to the configuration D(si).

Chapter 2. Action Graph Games 21

This parallel between Bayes nets and action graphs are not surprising. In
AGGFNs, we are trying to compute the probability distribution over configu-
rations Pr(D(si)|σ(si)). If we see each node m in the action graph as a ran-
dom variable D(m), this is the joint distribution of variables ν(si). However,
whereas edges in Bayes nets represent probabilistic dependence, edges in the
action graph have different semantics depending on the target. Incoming edges
of action nodes specifies the neighborhood ν(s) that we are interested in com-
puting the probabilities of. Incoming edges of a function node represents the
deterministic dependence between the random variable of the function node
D(p) and its parents. The only probabilistic components of action graphs are
the players’ mixed strategies. These are probability distributions of random
variables associated with players, but are not explicitly represented in the ac-
tion graph. Whereas AGGFNs in general are not DAGs, given an action s, we
can construct an induced Bayes net consisting of ν(s), the neighbors of function
nodes in ν(s), and the neighbors of any new function nodes included, and so
on until no more function nodes are included, and finally augmented with n
nodes representing the players’ mixed strategies. Whereas for CI AGGFNs, the
Bayes net formulation has a simple structure and does not yield a more efficient
algorithm compared to Algorithm 1, this formulation could be useful for non-
CI AGGFNs with a complex network of function nodes, as standard Bayes net
algorithms can be used to exploit the independencies in the induced Bayes net.

2.5 Applications

2.5.1 Application: Computing Payoff Jacobian

A game’s payoff Jacobian under a mixed strategy σ is defined as a
∑

i |Si| by∑
i |Si| matrix with entries defined as follows:

∂V isi(σ−i)

∂σi′(si′)
≡ ∇V i,i′si,si′

(σ) (2.19)

=
∑

s∈S

u (si,D(si, si′ , s))Pr(s|σ) (2.20)

Here whenever we use an overbar in our notation, it is shorthand for the sub-
script −{i, i′}. For example, s ≡ s−{i,i′}. The rows of the matrix are indexed by

i and si while the columns are indexed by i′ and si′ . Given entry ∇V i,i′si,si′
(σ),

we call si its primary action node, and si′ its secondary action node.
One of the main reasons we are interested in computing Jacobians is that it

is the computational bottleneck in Govindan and Wilson’s continuation method
for finding mixed-strategy Nash equilibria in multi-player games [Govindan and
Wilson 2003]. The Govindan-Wilson algorithm starts by perturbing the payoffs
to obtain a game with a known equilibrium. It then follows a path that is
guaranteed to give us one or more equilibria of the unperturbed game. In each
step, we need to compute the payoff Jacobian under the current mixed strategy

Chapter 2. Action Graph Games 22

in order to get the direction of the path; we then take a small step along the
path and repeat.

Efficient computation of the payoff Jacobian is important for more than
this continuation method. For example, the iterated polymatrix approximation
(IPA) method [Govindan and Wilson 2004] has the same computational problem
at its core. At each step the IPA method constructs a polymatrix game that is a
linearization of the current game with respect to the mixed strategy profile, the
Lemke-Howson algorithm is used to solve this game, and the result updates the
mixed strategy profile used in the next iteration. Though theoretically it offers
no convergence guarantee, IPA is typically much faster than the continuation
method. Also, it is often used to give the continuation method a quick start.
The payoff Jacobian may also be useful to multiagent reinforcement learning
algorithms that perform policy search.

Equation (2.20) shows that the ∇V i,i′si ,si′
(σ) element of the Jacobian can be

interpreted as the expected utility of agent i when she takes action si, agent i′

takes action si′ , and all other agents use mixed strategies according to σ. So
a straightforward approach is to use our DP algorithm to compute each entry
of the Jacobian. However, the Jacobian matrix has certain extra structure that
allows us to achieve further speedup.

First, we observe that some entries of the Jacobian are identical. If two
entries have same primary action node s, then they are expected payoffs on
the same utility function us, i.e. they have the same value if their induced
probability distributions over ∆(s) are the same. We need to consider two cases:

1. Suppose the two entries come from the same row of the Jacobian, say
player i’s action si. There are two sub-cases to consider:

(a) Suppose the columns of the two entries belong to the same player j,

but different actions sj and s′j . If s
(si)
j = s′(si)j , i.e. sj and s′j both

project to the same projected action in si’s projected action graph,
then ∇V i,jsi,sj = ∇V i,jsi,s′j .

(b) Suppose the columns of the entries correspond to actions of different

players. We observe that for all j and sj such that σ(si)(s
(si)
j) = 1,

∇V i,jsi,sj (σ) = V isi(σ−i). As a special case, if S
(si)
j = {∅}, i.e. agent

j does not affect i’s payoff when i plays si, then for all sj ∈ Sj ,
∇V i,jsi,sj (σ) = V isi(σ−i).

2. If si and sj correspond to the same action node s (but owned by agents
i and j respectively), thus sharing the same payoff function us, then
∇V i,jsi ,sj = ∇V j,isj ,si . Furthermore, if there exist s′i ∈ Si, s

′
j ∈ Sj such

that s′i
(s)

= s′j
(s)

, then ∇V i,jsi,s′j = ∇V j,isj ,s′i
.

Even if the entries are not equal, we can exploit the similarity of the pro-
jected strategy profiles (and thus the similarity of the induced distributions)
between entries, and re-use intermediate results when computing the induced

Chapter 2. Action Graph Games 23

distributions of different entries. Since computing the induced probability dis-
tributions is the bottleneck of our expected payoff algorithm, this provides sig-
nificant speedup.

First we observe that if we fix the row (i, si) and the column’s player j, then
σ is the same for all secondary actions sj ∈ Sj . We can compute the probability
distribution Pr(Dn−1|si, σ(si)), then for all sj ∈ Sj , we just need to apply the
action sj to get the induced probability distribution for the entry ∇V i,j

si,sj .
Now suppose we fix the row (i, si). For two column players j and j ′, their

corresponding strategy profiles σ−{i,j} and σ−{i,j′} are very similar, in fact they
are identical in n−3 of the n−2 components. For AGGs without function nodes,

we can exploit this similarity by computing the distribution Pr(Dn−1|σ(si)
−i), then

for each j 6= i, we “undo” j’s mixed strategy to get the distribution induced by
σ−{i,j}. Recall from Section 2.3.5 that the distributions are coefficients of the
multiplication of certain polynomials. So we can undo j’s strategy by computing
the long division of the polynomial for σ−i by the polynomial for σj .

This method does not work for contribution-independent AGGFNs, because
in general a player’s contribution to the configurations are not reversible, i.e.

given Pr(Dn−1|σ(si)
−i) and σj , it is not always possible to undo the contribu-

tions of σj . Instead, we can efficiently compute the distributions by recursively
bisecting the set of players in to sub-groups, computing probability distribu-
tions induced by the strategies of these sub-groups and combining them. For
example, suppose n = 9 and i = 9, so σ−i = σ1...8. We need to compute the
distributions induced by σ−{1,9}, . . . , σ−{8,9}, respectively. Now we bisect σ−i
into σ1...4 and σ5...8. Suppose we have computed the distributions induced by
σ1...4 as well as σ234, σ134, σ124, σ123, and similarly for the other group of 5 . . . 8.

Then we can compute Pr(·|σ(si)
−{1,9}) by combining Pr(·|σ(si)

234) and Pr(·|σ(si)
5678),

compute Pr(·|σ(si)
−{2,9}) by combining Pr(·|σ(si)

134) and Pr(·|σ(si)
5678), etc. We have

reduced the problem into two smaller problems over the sub-groups 1 . . . 4 and
5 . . . 8, which can then be solved recursively by further bisecting the sub-groups.
This method saves the re-computation of sub-groups of strategies when com-
puting the induced distributions for each row of the Jacobian, and it works with
any contribution-independent AGGFNs because it does not use long division to
undo strategies.

2.6 Experiments

We implemented the AGG representation and our algorithm for computing ex-
pected payoffs and payoff Jacobians in C++. We ran several experiments to
compare the performance of our implementation against the (heavily optimized)
GameTracer implementation [Blum et al. 2002] which performs the same com-
putation for a normal form representation. We used the Coffee Shop game (with
randomly-chosen payoff values) as a benchmark. We varied both the number of
players and the number of actions.

Chapter 2. Action Graph Games 24

1
10

100
1000

10000
100000

1000000
10000000

100000000

3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of players

p
ay

o
ff

s
st

o
re

d AGG
NF

1
10

100
1000

10000
100000

1000000
10000000

100000000

3 4 5 6 7 8 9 10
number of rows

pa
yo

ff
s

st
or

ed

AGG
NF

Figure 2.6: Comparing Representation Sizes of the Coffee Shop Game (log-
scale). Left: 5× 5 grid with 3 to 16 players. Right: 4-player r × 5 grid with r
varying from 3 to 10.

2.6.1 Representation Size

For each game instance we counted the number of payoff values that need to be
stored in each representation. Since for both normal form and AGG, the size
of the representation is dominated by the number of payoff values stored, the
number of payoff values is a good indication of the size of the representation.

We first looked at Coffee Shop games with 5×5 blocks, with varying number
of players. Figure 2.6 has a log-scale plot of the number of payoff values in each
representation versus the number of players. The normal form representation
grew exponentially with respect to the number of players, and quickly becomes
impractical for large number of players. The size of the AGG representation
grew polynomially with respect to n.

We then fixed the number of players at 4, and varied the number of blocks.
For ease of comparison we fixed the number of colums at 5, and only changed the
number of rows. Figure 2.6 has a log-scale plot of the number of payoff values
versus the number of rows. The size of the AGG representation grew linearly
with the number of rows, whereas the size of the normal form representation
grew like a higher-order polynomial. This was consistent with our theoretical
prediction that AGGFNs store O(|S|n3) payoff values for Coffee Shop games
while normal form representations store n|S|n payoff values.

2.6.2 Expected Payoff Computation

Second, we tested the performance of our dynamic programming algorithm
against GameTracer’s normal form based algorithm for computing expected
payoffs, on Coffee Shop games of different sizes. For each game instance, we
generated 1000 random strategy profiles with full support, and measured the
CPU (user) time spent computing the expected payoffs under these strategy
profiles. We fixed the size of blocks at 5× 5 and varied the number of players.
Figure 2.7 shows plots of the results. For very small games the normal form
based algorithm is faster due to its smaller bookkeeping overhead; as the num-

Chapter 2. Action Graph Games 25

0

20

40

60

80

100

120

3 4 5 6 7 8 9 10 11 12 13 14 15 16

number of players

C
P

U
 ti

m
e

in
 s

ec
on

ds AGG
NF

0

10

20

30

40

50

60

3 4 5 6 7 8 9 10

number of rows

C
P

U
 ti

m
e

in
 s

ec
on

ds AGG
NF

Figure 2.7: Running times for payoff computation in the Coffee Shop Game.
Left: 5× 5 grid with 3 to 16 players. Right: 4-player r × 5 grid with r varying
from 3 to 10.

ber of players grows larger, our AGGFN-based algorithm’s running time grows
polynomially, while the normal form based algorithm scales exponentially. For
more than five players, we were not able to store the normal form representation
in memory.

Next, we fixed the number of players at 4 and number of columns at 5, and
varied the number of rows. Our algorithm’s running time grew roughly linearly
in the number of rows, while the normal form based algorithm grew like a higher-
order polynomial. This was consistent with our theoretical prediction that our
algorithm take O(n|S|+n4) time for this class of games while normal-form based
algorithms take O(|S|n−1) time.

Last, we considered strategy profiles having partial support. While ensuring
that each player’s support included at least one action, we generated strategy
profiles with each action included in the support with probability 0.4. Game-
Tracer took about 60% of its full-support running times to compute expected
payoffs in this domain, while our algorithm required about 20% of its full-
support running times.

2.6.3 Computing Payoff Jacobians

We have also run similar experiments on computing payoff Jacobians. As dis-
cussed in Section 2.5.1, the entries of a Jacobian can be formulated as expected
payoffs, so a Jacobian can be computed by doing an expected payoff computa-
tion for each of its entry. In Section 2.5.1 we discussed methods that exploits the
structure of the Jacobian to further speedup the computation. GameTracer’s
normal-form based implementation also exploits the structure of the Jacobian
by re-using partial results of expected-payoff computations. When comparing
our AGG-based Jacobian algorithm as described in Section 2.5.1 against Ga-
meTracer’s implementation, the results are very similar to the above results for
computing expected payoffs, i.e. our implementation scales polynomially in n
while GameTracer scales exponentially in n. We instead focus on the question
of how much speedup does the methods in Section 2.5.1 provide, by comparing

Chapter 2. Action Graph Games 26

0.1
1

10
100

1000
10000

3 4 5 6 7 8 9 10
number of players

C
P

U
 t

im
e

 i
n

 s
e

c
o

n
d

s

AGG Jacobian
exp. payoff

0.1
1

10
100

1000

3 4 5 6 7 8 9 10

number of rows

C
P

U
 t

im
e

in
 s

ec
o

n
d

s

AGG Jacobian
exp. payoff

Figure 2.8: Running times for Jacobian computation in the Coffee Shop Game.
Left: 5× 5 grid with 3 to 10 players. Right: 4-player r × 5 grid with r varying
from 3 to 10.

our algorithm in Section 2.5.1 against the algorithm that computes expected
payoffs (using our AGG-based algorithm described in Section 2.3) for each of
the Jacobian’s entries. The results are shown in Figure 2.8. Our algorithm is
about 50 times faster. This confirms that the methods discussed in Seciton 2.5.1
provide significant speedup for computing payoff Jacobians.

2.6.4 Finding Nash Equilibria using the
Govindan-Wilson algorithm

Govindan and Wilson’s algorithm [Govindan and Wilson 2003] is one of the most
competitive algorithms for finding Nash equilibria for multi-player games. The
computational bottleneck of the algorithm is repeated computation of payoff
Jacobians as defined in Section 2.5.1. Now we show experimentally that the
speedup we achieved for computing Jacobians using the AGG representation
leads to a speedup in the Govidan-Wilson algorithm.

We compared two versions of the Govindan-Wilson algorithm: one is the
implementation in GameTracer, where the Jacobian computation is based on
the normal form representation; the other is identical to the GameTracer im-
plementation, except that the Jacobians are computed using our algorithm for
the AGG representation. Both techniques compute the Jacobians exactly. As
a result, given an initial perturbation to the original game, these two imple-
mentations would follow the same path and return exactly the same answers.
So the difference in their running times would be due to the different speeds of
computing Jacobians.

Again, we tested the two algorithms on Coffee Shop games of varying sizes:
first we fixed the size of blocks at 4× 4 and varied the number of players; then
we fixed the number of players at 4 and number of columns at 4, and varied
the number of rows. For each game instance, we randomly generated 10 initial
perturbation vectors, and for each initial perturbation we run the two versions
of the Govindan-Wilson algorithm. Since the running time of the Govindan-
Wilson algorithm highly depends on the initial perturbation, it is not meaningful

Chapter 2. Action Graph Games 27

2.5 3 3.5 4 4.5 5 5.5
0

5

10

15

20

25

30

35

ra
tio

 o
f N

F
tim

e
vs

. A
G

G
 ti

m
e

number of players
2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

ra
tio

 o
f N

F
tim

e
vs

. A
G

G
 ti

m
e

number of rows

Figure 2.9: Ratios of Running times for the Govindan-Wilson algorithm in the
Coffee Shop Game. Left: 4× 4 grid with 3 to 5 players. Right: 4-player r × 4
grid with r varying from 3 to 9. The error bars indicate standard deviation
over 10 random initial perturbations. The constant lines at 1.0 indicating equal
running times are also shown.

to compare the running times with different initial perturbations. Instead, we
look at the ratio of running times between the normal form implementation
and the AGG implementation. Thus a ratio greater than 1 means the AGG
implementation spent less time than the normal form implementation. We
plotted the results in Figure 2.9. The results confirmed our theoretical prediction
that as the size of the games grows (either in the number of players or in the
number of actions), the speedup of the AGG implementation compared to the
normal from implementation increases.

2.7 Conclusions

We presented a polynomial-time algorithm for computing expected payoffs in
action-graph games. For AGGs with bounded in-degree, our algorithm achieves
an exponential speed-up compared to normal-form based algorithms and Bhat
and Leyton-Brown [2004]’s algorithm. We also extended the AGG represen-
tation by introducing function nodes, which allows us to compactly represent
a wider range of structured utility functions. We showed that if an AGGFN
is contribution-independent, expected payoffs can be computed in polynomial
time.

Our current and future research includes two directions: Computationally,
we plan to apply our expected payoff algorithm to speed up other game-theoretic
computations, such as computing best responses and the simplicial subdivision
algorithm for finding Nash equilibria. Also, as a direct corollary of our Theorem
2 and Papadimitriou [2005]’s result, correlated equilibria can be computed in
time polynomial in the size of the AGG.

Representationally, we plan to extend the AGG framework to represent more
types of structure such as additivity of payoffs. In particular, we intend to study

Chapter 2. Action Graph Games 28

is Bayesian games. In a Bayesian game, players are uncertain about which game
(i.e. payoff function) they are playing, and each receives certain private informa-
tion about the underlying game. Bayesian games are heavily used in economics
for modeling competitive scenarios involving information asymmetries, e.g. for
modeling auctions and other kinds of markets. A Bayesian game can be seen
as a compact representation, since it is much more compact than its induced
normal form. We plan to use the AGG framework to represent not only the
structure inherent in Bayesian games, but also context-specific independence
structures such as the ones we have considered here.

29

Chapter 3

Bidding Agents for Online
Auctions with Hidden Bids

3.1 Introduction

There1 has been much research on the study of automated bidding agents for
auctions and other market-based environments. The Trading Agent Competi-
tions (TAC-Classic and TAC Supply Chain Management) have attracted much
interest [Wellman et al. 2002]. There have also been research efforts on bid-
ding agents and bidding strategies in other auction environments [Byde 2002;
Boutilier et al. 1999; Greenwald and Boyan 2004; Arora et al. 2003; Cai and
Wurman 2003; Anthony et al. 2001]. Although this body of work considers
many different auction environments, bidding agents always face a similar task:
given a valuation function, the bidding agent needs to compute an optimal bid-
ding strategy that maximizes expected surplus. (Some environments such as
TAC-SCM also require agents to solve additional, e.g., scheduling tasks.)

The “Wilson Doctrine” in mechanism design argues that mechanisms should
be constructed so that they are “detail-free”—that is, so that agents can behave
rationally in these mechanisms even without information about the distribution
of other agents’ valuations. For example, the VCG mechanism is detail-free
because under this mechanism it is a weakly dominant strategy to bid exactly
one’s valuation, regardless of other agents’ beliefs, valuations or actions. Un-
der common assumptions (in particular, independent private values) single-item
English auctions are similar: an agent should remain in the auction until the
bidding reaches the amount of her valuation.

While detail-free mechanisms are desirable, they are not ubiquitous. Very
often, agents are faced with the problem of deciding how to behave in games
that do not have dominant strategies and where other agents’ preferences are
strategically relevant. For example, we may want to participate in a series of
auctions run by different sellers at different times. This is a common scenario
at online auction sites such as eBay. In Section 3.4 we consider a sequential
auction model of this scenario, and show that information about other bidders’
preferences is very relevant in constructing a bidding strategy.

1A version of this chapter has been submitted for publication. Jiang, A.X. and Leyton-
Brown, K. (2005) Bidding Agents for Online Auctions with Hidden Bids. Submitted to the
Machine Learning Journal.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 30

3.1.1 Game-Theoretic and Decision-Theoretic
Approaches

How should a bidding agent be constructed? Depending on the assumptions we
choose to make about other bidders, two broad approaches to computing bid-
ding strategies suggest themselves: a game-theoretic approach and a decision-
theoretic approach. The game theoretic approach assumes that all agents are
perfectly rational and that this rationality is common knowledge; the auction
is modeled as a Bayesian game. Under this approach, a bidding agent would
compute a Bayes-Nash equilibrium of the auction game, and play the equilib-
rium bidding strategy. Much of the extensive economics literature on auctions
follows this approach (see, e.g., the survey in [Klemperer 2000]). For exam-
ple, in environments with multiple, sequential auctions for identical items and
in which each bidder wants only a single item, the Bayes-Nash equilibrium is
well-known [Milgrom and Weber 2000; Weber 1983]. Such equilibria very often
depend on the distribution of agents’ valuation functions and the number of
bidders. Although this information is rarely available in practice, it is usually
possible to estimate these distributions from the bidding history of previous
auctions of similar items. Note that this involves making the assumption that
past and future bidders will share the same valuation distribution.

The game-theoretic approach has received a great deal of study, and is per-
haps the dominant paradigm in microeconomics. In particular, there are very
good reasons for seeking strategy profiles that are resistant to unilateral devia-
tion. However, this approach is not always useful to agents who need to decide
what to do in a particular setting, especially when the rationality of other bid-
ders is in doubt, when the computation of equilibria is intractable, or when the
game has multiple equilibria. In such settings, it is sometimes more appropri-
ate to rely on decision theory. A decision-theoretic approach effectively treats
other bidders as part of the environment, and ignores the possibility that they
may change their behavior in response to the agent’s actions. We again make
the assumption that the other bidders come from a stationary population; how-
ever, in this case we model agents’ bid amounts directly rather than modeling
their valuations and then seeking an equilibrium strategy. We then solve the re-
sulting single-agent decision problem to find a bidding strategy that maximizes
expected payoff. We could also use a reinforcement-learning approach, where
we continue to learn the bidding behavior of other bidders while participating
in the auctions. Much recent literature on bidding agent design follows the
decision-theoretic approach, e.g. [Boutilier et al. 1999; Byde 2002; Greenwald
and Boyan 2004; Stone et al. 2002; Mackie-Mason et al. 2004; Osepayshvili
et al. 2005].

This chapter does not attempt to choose between these two approaches; it
is our opinion that each has domains for which it is the most appropriate. The
important point is that regardless of which approach we elect to take, we are
faced with the subproblem of estimating two distributions from the bidding
history of past auctions: the distribution on the number of bidders, and the
distribution of bid amounts (for decision-theoretic approaches) or of valuations

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 31

(for game-theoretic approaches). Consequently, this problem has received much
discussion in the literature. For example, Athey and Haile [2002] and various
others in econometrics study the estimation of valuation distributions in various
standard auction types given observed bids, assuming that bidders are perfectly
rational and follow equilibrium strategies. On the decision-theoretic front, a
popular approach is to estimate the distribution of the final prices in auctions
based on observed selling prices, and then to use this distribution to compute
the optimal bidding strategy. Examples of this include Stone et al.’s [2002]
ATTac agent for the Trading Agent Competition, Mackie-Mason et al.’s [2004]
study of bidding in simultaneous ascending auctions and the follow-up work
in [Osepayshvili et al. 2005], Byde’s [2002] study of bidding in simultaneous
online English auctions, and Greenwald and Boyan’s [2004] analysis of sequential
English auctions. A paper by Boutilier et al. [1999] takes a different decision-
theoretic approach which is relevant to the approach we propose in this chapter.
We defer discussion of this work until Section 3.6, after we have presented our
approach.

3.1.2 Overview

In this chapter we consider sequential English auctions in which a full bidding
history is revealed, such as the online auctions run by eBay. It might seem that
there is very little left to say: we learn the distributions of interest from the
bidding history, then compute a bidding strategy based on that information for
the current and future auctions. However, we show that under realistic bidding
dynamics (described in Section 3.2) the observed bidding histories omit some
relevant information. First, some bidders may come to the auction when it is
already in progress, find that the current price already exceeds their valuation,
and leave without placing a bid. Second, the amount the winner was willing to
pay is never revealed. Ignoring these sources of bias can lead to poor estimates
of the underlying valuation distribution and distribution of number of bidders.
In Section 3.3 we propose a learning approach based on the Expectation Max-
imization (EM) algorithm, which iteratively generates hidden bids consistent
with the observed bids, and then computes maximum-likelihood estimations of
the valuation distribution based on the completed set of bids. The learned dis-
tributions can then be used in computing decision-theoretic or game-theoretic
bidding strategies. Section 3.4 discusses the computation of the optimal strategy
for an agent in a repeated English auction setting under the decision-theoretic
approach, and in a similar (non-repeated) setting under the game-theoretic ap-
proach. In Section 3.5 we present experimental results on synthetic data sets
as well as on data collected from eBay, which show that our EM learning ap-
proach makes better estimates of the distributions, gets more payoff under the
decision-theoretic model, and makes a better approximation to the Bayes-Nash
equilibrium under the game-theoretic model, as compared to the straightforward
approach which ignores hidden bids.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 32

3.2 A Model of Online Auctions

Consider a (possibly repeated) auction held online, e.g., on eBay. There are m
potential bidders interested in a certain auction for a single item. We assume
that bidders are risk-neutral, have independent private values (IPV), and that
utilities are quasilinear. The number of bidders m is drawn from a discrete
distribution g(m) with support [2,∞). Bidders’ potential valuations (in the
game-theoretic context) or bids (in the decision-theoretic context) are indepen-
dently drawn from a continuous distribution f(x).

3.2.1 Bidding Dynamics

The m potential bidders arrive at the auction site sequentially. When each
bidder arrives, she observes the bids that have been accepted in the auction
so far, places a single proxy bid2 and then leaves the system. The auctioneer
processes new bids as follows:

1. When a proxy bid is submitted, the auctioneer compares it to the current
price level, which is the second-highest proxy bid so far plus a small bid
increment.3

(a) If the submitted bid is not greater than the current price level the
bid is dropped and no record of the bid is recorded in the auction’s
history.

(b) If the submitted bid is higher than the current price level but lower
than the highest proxy bid so far, then the submitted bid is accepted,
the bid amount of the currently winning bid is increased to equal
the submitted bid (i.e., this bid remains the winning bid), and the
submitted bid loses.

(c) If the submitted bid is higher than the previously winning bid then
the price level is increased to equal the previously winning bid and
the submitted bid is made the current winner.

2. At the end of the auction, the item is awarded to the bidder who placed the
highest bid, and the final price level is the amount of the second highest
bid.

3.2.2 Hidden Bids

According to our model, some bidders’ proxy bid amounts will be revealed. This
includes any bid that was higher than the current price level at the time it was
placed, even if that bid was immediately outbid by another proxy bid. However,
other bids will not be observed. There are two types of hidden bids:

2A proxy bidding system asks bidders for their maximum willingness to pay, and then bids
up to this amount on the bidder’s behalf. Such systems are common on online auction sites
such as eBay; see e.g., http://pages.ebay.com/help/buy/proxy-bidding.html

3For simplicity in this chapter we ignore this small increment and assume that the current
price level is the second-highest proxy bid so far.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 33

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7

Figure 3.1: An example of the bidding process of an auction with 7 potential
bidders.

1. The highest bid of each auction xhi.

2. Dropped bids xd that were lower than the current price when they were
placed.

Let us denote the set of visible bids as xv and the set of hidden bids as xh.
Let n denote the number of bidders that appears in the bidding history. This
means that xv will always contain (n−1) bids, since the winning bidder’s proxy
bid is never observed. Since there are m potential bidders in total, (n− 1) bids
are visible, and one bid is the highest bid xhi, there are (m − n) dropped bids
in xd.

Figure 3.1 shows an example of the bidding process for an auction according
to our online auction model, and illustrates how bids are dropped. Bids arrive
sequentially from left to right. Bids 3, 4 and 7 (the grey bars) will be dropped
because they are lower than the current bid amount at their respective time
steps. The amount of the winning bid (6) will not be revealed, although an
observer would know that it was at least the amount of bid 2, which would be
the amount paid by bidder 6.

3.2.3 Discussion

Our model of the bidding process is quite general. Notice that when a bidder ob-
serves that the price level is higher than her potential bid, she may decide not to
bid in this auction. This is equivalent to our model in which she always submits

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 34

the bid, because dropped bids do not appear in the bidding history (Indeed, this
is the motivation for our model). Also our model covers the case of last-minute
bidding, which happens quite often in eBay auctions [Roth and Ockenfels 2002]:
even though last-minute bids may be submitted almost simultaneously, eBay
processes the bids in sequence.

Observe that with a proxy bidding system, and when agents have indepen-
dent private values, bidders would not benefit from bidding more than once in
an auction. However, in practice eBay bidders quite often make multiple bids
in one auction. One possible motivation for these bids is a desire to learn more
information about the proxy bid of the current high bidder [Shah et al. 2003].
However, only the last bid of the bidder represents her willingness to pay. Given
a bidder’s last bid, her earlier bids carry no extra information. Therefore, we
will be interested in only the last bid from each bidder.4 We can preprocess
the bidding histories by removing all bids except the last bids from each bidder,
without losing much information.

3.3 Learning the Distributions

Given the model of the bidding process, the first task of our bidding agent is to
estimate the distributions f(x) and g(m) from the bidding history. Suppose we
have access to the bidding history of K auctions for identical items.

3.3.1 The Simple Approach

A simple approach is to ignore the hidden bids, and to directly estimate f(x)
and g(m) from observed data. The observed number of bidders, n, is used to
estimate g(m). To estimate f(x) we use the observed bids xv , which consists of
(n− 1) bids for each auction. Any standard density estimation technique may
be used.

Because it ignores hidden bids, this approach can be expected to produce
biased estimates of f and g:

• g(m) will be skewed towards small values because n ≤ m.

• f(v) may be skewed towards small values because it ignores the winning
bid xhi, or it may be skewed towards large values because it ignores the
dropped bids xd.

A popular variation of this approach (mentioned in Section 3.1) is to di-
rectly estimate the distribution of final prices from the selling prices of previous
auctions, then to use this distribution to compute a decision-theoretic bidding
strategy. The problem with this approach is that for English auctions, the selling
prices are the second-highest bids. As we will show in Section 3.4, to compute a
decision-theoretic strategy we really need the distribution of the other bidders’

4In a common value model, the earlier bids do carry some information, and we would not
be able to simply ignore those bids.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 35

highest bids. Using the distribution of final prices introduces bias, as this distri-
bution is skewed towards small values compared to the distribution of highest
bids.

3.3.2 EM Learning Approach

We would like to have an estimation strategy that accounts for the hidden bids
xh and any bias introduced by their absence. Suppose f(x) belongs to a class
of distributions parameterized by θ, f(x|θ). Further suppose that g(m) belongs
to a class of distributions parameterized by λ, g(m|λ). For example, f(x) could
be a Normal distribution parameterized by its mean µ and variance σ2, whereas
g(m) could be a Poisson distribution parameterized by its mean, λ. We want to
find the maximum likelihood estimates of θ and λ given the observed data xv .

Suppose that we could actually observe the hidden bids xh in addition to
xv . Then estimating θ and λ from the completed data set (xv , xh) would be
easy. Unfortunately we do not have xh. Given xv , and with the knowledge of
the bidding process, we could generate xh if we knew θ and λ. Unfortunately
we do not know θ and λ.

A popular strategy for learning this kind of model with missing data is the
Expectation Maximization (EM) algorithm [Dempster et al. 1977]. EM is an
iterative procedure that alternates between E steps which generate the missing
data given current estimates for the parameters and M steps which compute the
maximum likelihood (or maximum a posteriori) estimates for the parameters
based on the completed data, which consists of the observed data and current
estimates for the missing data. Formally, the E step computes

Q(θ) =

∫
log(p(xh, xv |θ))p(xh|xv , θ(old), λ(old))dxh, (3.1)

and the M step solves the optimization

θ(new) = arg max
θ

(Q(θ)). (3.2)

Analogous computations are done to estimate λ, the parameter for g(m|λ).
The EM algorithm terminates when λ and θ converge. It can be shown that
EM will converge to a local maximum of the observed data likelihood function
p(xv |θ, λ).

EM is a particularly appropriate algorithm in our auction setting with hidden
bids, because

1. EM was designed for finding maximum likelihood (ML) estimates for prob-
abilistic models with unobserved latent variables.

2. EM is especially helpful when the observed data likelihood function p(xv |θ, λ)
(which we want to maximize) is hard to evaluate, but the ML estimation
given complete data (xv , xh) is relatively easy (because the M step cor-
responds to maximizing the expected log-likelihood of (xv , xh)). This is
exactly the case in our auction setting.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 36

The E Step

The integral in Equation (3.1) is generally intractable for our complex bidding
process. However, we can compute a Monte Carlo approximation of this integral
by drawing N samples from the distribution p(xh|xv , θ(old), λ(old)), and approx-
imating the integral by a small sum over the samples (see e.g. [Andrieu et al.
2003]). Applied to our model, in each E step our task is therefore to generate
samples from the distribution p(xh|xv , θ(old), λ(old)). Recall that xh consists of
the highest bid xhi and the dropped bids xd.

Given θ(old) and the second highest bid (which is observed), the highest
bid xhi can easily be sampled. According to the bidding process described in
Section 3.2, the highest bid was generated by repeatedly drawing from f(x|θ(old))
until we get a bid higher than the previously highest (now second-highest) bid.
This is exactly the rejection-sampling procedure for the distribution f(x|θ(old))
truncated at the second highest bid and renormalized. For distributions with a
simple functional form (e.g. normal distributions), it may be easier to sample
directly from the truncated distribution by reversing the CDF (see e.g. [West
1994]).

Sampling the dropped bids xd is a more difficult task. We use the following
procedure, which is based on simulating the bidding process:

1. Sample m from g(m|λ(old)).

2. If m < n, reject the sample and go back to step 1.

3. Simulate the bidding process using xv and m− n dropped bids:

(a) Repeatedly draw a sample bid from f(x|θ(old)), and compare it to
the current price level. If it is lower than the price level, add the bid
to the set of dropped bids xd. Otherwise, the current price level is
increased to the next visible bid from xv .

(b) If the number of bids in xd exceeds m − n, or if we used up all the
bids in xv before we have m − n dropped bids in xd, we reject this
sample and go back to step 1. Only when we used up all bids in xv
and we have m− n bids in xd, do we accept the sample of xd.

4. Repeat until we have generated N samples of xd.

The M Step

Our task at each M step is to compute the maximum likelihood (ML) esti-
mates of λ and θ from xv and the generated samples of xh. For many standard
parametric families of distributions, there are analytical solutions for the ML
estimates. For example, if f(x) is a normal distribution N(µ, σ), then given the
complete set of bids (xv , xh), the ML estimate of µ is the sample mean, and
the ML estimate of σ is the sample standard deviation. If g(m) is a Poisson
distribution, then the ML estimate of the mean parameter λ is the mean of the
number of bidders per auction. If analytical solutions do not exist we can use

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 37

numerical optimization methods such as simulated annealing. If prior distribu-
tions on λ and θ are available, we may instead compute maximum a posteriori
(MAP) estimates, which are point estimates of λ and θ that maximize their
posterior probabilities.

3.3.3 Learning Distributions in a Game-Theoretic
Setting

The approach we just described is decision-theoretic because we estimate the
distribution of bid amounts without considering how other agents would react
to our behavior. What if we want to take a game-theoretic approach? Athey
and Haile [2002] discussed estimation in the game-theoretic setting, however
they generally assume that the number of bidders is known (there is a brief
discussion of unknown number of bidders, but it is not relevant to our online
auction setting).

Let f(v) be the distribution of bidder’s valuations (instead of bid amounts),
and let g(m) denote the distribution of number of bidders, as before. Given a
bidder’s valuation v, her bid amount in the game-theoretic setting is given by
the Bayes-Nash equilibrium of the auction game. Many (but not all) auction
games have symmetric pure strategy equilibria. Assume there is a symmetric
pure strategy equilibrium given by the bid function b(v|f, g). Our task is to
estimate f(v) and g(m) given the observed bids.

We can use an EM learning algorithm similar to the one in Section 3.3.2 to
estimate f(v|θ) and g(m|λ), where θ and λ are parameters for f and g:

• E step: for each auction with observed bids xv :

– Compute observed bidders’ valuations vv from xv by inverting the
bid function.5

– Generate bidders with valuations vh who place hidden bids xh =
b(vh|f (old), g(old)). This is done by a similar procedure to the one in
Section 3.3.2 that simulates the auction’s bidding process.

• M step: update θ and λ to maximize the likelihood of the valuations
(vv , vh).

3.4 Constructing a Bidding Agent

In Sections 3.2 and 3.3 we presented a model of the bidding process for a single
auction, and proposed methods to estimate the distributions of bids and number
of bidders in an auction. But our work is not done yet: how do we make use of
these estimated distributions to compute a bidding strategy?

5If the bidding function does not have a single-valued inverse function, or if the equilibrium
has mixed strategies, we just generate bidders with valuation vv that would likely bid xv under
the equilibrium.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 38

If we only participate in one English auction, bidding is simple: under the
IPV model it is a dominant strategy to bid up to our valuation for the item, and
we do not even need to estimate the distributions. However if we are interested
in more complex environments, good estimates of the distributions f(x) and
g(m) are essential for computing a good bidding strategy. In this section we
discuss two such environments: finitely-repeated online auctions and unrepeated
online auctions without proxy bidding. We consider the first problem from a
decision-theoretic point of view, and take a game-theoretic approach to the
second problem.

3.4.1 A Decision-Theoretic Approach to Repeated
Auctions

In this section we develop a decision-theoretic bidding agent for finitely repeated
auctions. We choose this setting because it is a reasonable model of the decision-
theoretic problem we would face if we wanted to buy one item from an online
auction site. Our estimation algorithm can straightforwardly be applied to more
complex decision-theoretic models such as infinite horizon models with discount
factors and combinatorial valuation models.

The Auction Environment

Suppose we only want to buy one item (say a Playstation 2) in an environment
(say eBay) where multiple auctions for similar, but not necessarily identical,
Playstation 2 systems are held regularly. Recall that we have assumed that
utility is quasilinear: thus if we successfully win one item, our utility will be
equal to our valuation for the item minus the price we paid. So our bidding
agent’s task is to compute a bidding strategy that will maximize this utility.
Assume that we are only interested in the first k auctions that will be held after
we arrived at the auction site. One motivation for such a restriction is that we
prefer to have the item within a bounded amount of time. If we fail to win an
item from the k auctions, we lose interest in the item and leave the auction site,
and our utility is 0. (Alternatively, we could say that if we fail to win an auction
then we could buy the item from a store after leaving the auction site, in which
case we would get some other known and constant amount of utility.)

Some of the k auctions may overlap in time, but since eBay auctions have
strict closing times, this can be modeled as a sequential decision problem, where
our agent makes bidding decisions right before each auction closes. Number the
auctions 1 . . . k according to their closing times. Let vj denote our valuation
for the item from auction j. Note that this allows the items in the auctions to
be non-identical. Let bj denote our agent’s bid for auction j. Let Uj denote
our agent’s expected payoff from participating in auctions j . . . k, assuming we
did not win before auction j. Let Uk+1 be our payoff if we fail to win any of
the auctions. For simplicity we define Uk+1 = 0, though the analysis would be
similar for any constant value. Suppose that for each auction j the number of
other bidders is drawn from gj(m) and each bidder’s bid is drawn from fj(x).

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 39

Since each auction j is an English auction, only the highest bid from other bid-
ders affects our payoff. Let f 1

j (x) and F 1
j (x) respectively denote the probability

density function and cumulative density function (CDF) of the highest bid from
other bidders in the jth auction. Then

F 1
j (x) =

∞∑

m=2

gj(m)(Fj(x))m,

where Fj(x) is the CDF of fj(x). Now Uj can be expressed as the following
function of the future bids bj:k = (bj , . . . , bk) and valuations vj:k = (vj , . . . , vk):

Uj(bj:k , vj:k) =

∫ bj

−∞
(vj − x)f1

j (x)dx + (1− F 1
j (bj))Uj+1(bj+1:k, vj+1:k) (3.3)

The first term in Equation (3.3) is the expected payoff from the jth auction; the
second term is the expected payoff from the later auctions.

The Optimal Strategy

Greenwald and Boyan [2004] and Arora et al. [2003] have analyzed similar auc-
tion models. Following similar reasoning, we can derive the optimal bidding
strategy for our auction model. Let b∗j:k be the optimal bidding strategy for
auctions j, . . . , k. Let U∗j (vj:k) denote the expected payoff under optimal strat-

egy, i.e. U∗j (vj:k) = Uj(b
∗
j:k, vj:k). We can optimize Uj by working from the kth

auction to the first one in a manner similar to backward induction. By solving
the first-order conditions of Uj , we obtain the optimal bidding strategy:

b∗j = vj − U∗j+1(vj+1:k) (3.4)

In other words, our agent should shade her bids by the “option value”, i.e.
the expected payoff of participating in future auctions. The exception is of
course the kth auction; in this case there are no future auctions and the optimal
bid is b∗k = vk. Thus we see that the standard result that honest bidding is
optimal in an unrepeated auction is recovered as the special case k = 1.

The computation of the optimal bidding strategies requires the computation
of the expected payoffs U∗j = Uj(b

∗
j:k, vj:k), which involves an integral over the

distribution f1
j (x) (Equation 3.3). In general this integral cannot be solved an-

alytically, but we can compute its Monte Carlo approximation if we can sample
from f1

j (x). If we can sample from fj(x) and gj(m), we can use the following

straightforward procedure to generate a sample from f 1
j (x):

1. draw m from gj(m);

2. draw m samples from fj(x);

3. keep the maximum of these m samples.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 40

The bidding strategy b∗1:k computed using Equations (3.4) and (3.3) is optimal,
provided that the distributions fj(x) and gj(m) are the correct distributions
of bids and number of bidders for all j ∈ 1 . . . k. Of course in general we do
not know the true fj(x) and gj(m) and the focus of this chapter is to estimate
the distributions from the bidding history and use the estimated distributions
to compute the bidding strategy. As a result, the computed bidding strategy
should be expected to achieve less than the optimal expected payoff. However, it
is reasonable to think that better estimates of f(x) and g(m) should give bidding
strategies with higher expected payoffs. This is confirmed in our experiments
across a wide range of data sets, which we discuss in Section 3.5.

Auctions that Overlap in Time: Exploiting Early Bidding

We observe that while the optimal bid in auction j does not depend on f 1
j , it

does depend on f1
l for l > j. So far we have been estimating f 1

l (x) using fl(x)
and gl(m). In practice, auctions overlap in time, and we often observe some
early bidding activity by other bidders in auctions j+1, . . . , k before we have to
make a bid on auction j. This extra information allows us to make even more
informed (posterior) estimates on f 1

l (x), l > j, based on fl(x), gl(m) and the
observed bids for auction l, which leads to a better bid for auction j.

Suppose we have observed n − 1 early bids, denoted by xv ; the current
highest bid xhi is not revealed (but can be sampled from f(x) truncated at the
current price). Since the auction is not over, there will be some set of future
bids xfuture (possibly empty). When the auction closes, the highest bid from the
other bidders will be max{xhi, xfuture}. We can generate xfuture if we know the
number of future bids. We know the total number of bids m is drawn from g(m),
and the number of bids made so far is n+ |xd|, where xd are the dropped bids
so far, so the number of future bids is m− n− |xd|. Now we have a procedure
that samples from f1(x):

1. Simulate the auction using our model in Section 3.2 to generate xd, the
dropped bids so far.

2. Sample the total number of bids m from g(m).

3. Compute the number of future bids, m− n− |xd|.

(a) If this quantity is negative, reject the sample.

(b) Otherwise generate xfuture as (m− n− |xd|) bids drawn from f(x).

4. Generate xhi and take the maximum of xfuture and xhi.

3.4.2 A Game-Theoretic Approach to Bidding in Online
Auctions without Proxies

In Section 3.4.1 we discussed building a decision-theoretic bidding agent for re-
peated English auctions. What happens if we try to use the game-theoretic

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 41

approach on our auction model to build an agent that plays a Bayes-Nash equi-
librium of the auction game?

The difficulty turns out to be identifying the equilibrium. If each bidder
other than our agent only participates in one auction, then the situation is easy.
In this case the other bidders’ dominant strategies will be to bid truthfully up
to the amount of their valuations. Assuming all bidders follow this dominant
strategy as a game-theoretic approach would have us do, we find that the dis-
tribution of bids is the same as the distribution of valuations. Thus, our agent’s
strategy should be the same as the decision-theoretic optimal strategy described
in Section 3.4.1. It is easy to verify that this strategy together with the other
players’ truthful bidding forms a Bayes-Nash equilibrium.

If the other bidders participate in more than one auction then the equilibrium
strategy gets more complex, both strategically and computationally. Milgrom
and Weber [2000] have derived equilibrium strategies for sequential auctions
under some strong simplifying assumptions, such as identical items, a fixed
number of bidders, and all bidders entering the auctions at the same time. In
an online auction setting, these assumptions are not reasonable: the items are
often heterogenous, the number of bidders is unknown ex ante, and bidders have
different entry times and exit policies. The equilibrium strategy in the general
case is not known. Therefore, it is an open problem to find a game-theoretic
model for repeated online auctions that is realistic and yet still tractable.

Online Auctions without Proxies

Because of the difficulties described above, we turn to a slightly different auc-
tion setting in order to show how our distribution learning techniques can be
used to build a game-theoretic bidding agent. Specifically, we will consider an
online auction setting which differs in one crucial respect from the setting de-
fined in Section 3.2. Bidders still participate in an online ascending auction
against an unknown number of opponents and still arrive and bid sequentially;
however, now we add the restriction that bidders cannot place proxy bids. In-
stead, bidders can now place only a single bid before they leave the auction
forever; the game now takes on a flavor similar to a first-price auction, but
with different information disclosure rules. We chose this game because it has
hidden-bid characteristics similar to the online auctions we discussed earlier,
but at the same time it also has a known, computationally tractable—and yet
non-trivial—Bayes-Nash equilibrium.

More formally, suppose that there are m potential bidders interested in a
single item. The numberm is drawn from a distribution g(m), and is observed by
the auctioneer but not the bidders. Bidders have independent private valuations,
drawn from the distribution f(v). A bid history records every bid which is placed
along with the bid amount, and is observable by all bidders. The auction has
the following rules:

• The auctioneer determines a random sequential order to use in approach-
ing bidders.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 42

• Each bidder is approached and asked to make a bid. Each bidder is asked
once and only once.

• When asked, a bidder has to either make a bid which is at least the current
highest bid plus a constant minimum increment δ, or decide not to bid.

1. If the bidder places a bid, it is recorded in the bidding history.

2. Otherwise, no record is made of the fact that the auctioneer ap-
proached the bidder.

• The auction ends after the last bidder makes her decision. The highest
submitted bid wins, and the winner pays her bid amount. The winner’s
utility is her valuation minus her payment; other bidders get zero utility.

Computing Equilibrium Strategies

We now turn to the construction of a game-theoretic bidding agent for the
auction described in Section 3.4.2. We begin by supposing that the distributions
f(v) and g(m) are common knowledge, which allows us to treat the auction as
a Bayesian game and find its Bayes-Nash equilibrium.

Suppose there exists a pure-strategy equilibrium of this game. Consider
bidder i with valuation v, who is asked to make the next bid when the bid-
ding history is xv . Denote b(v|xv) the equilibrium bidding strategy. Before
we compute b(v|xv), let us first eliminate dominated strategies. As in classical
sealed-bid first-price auctions, it is obvious that we should never bid higher than
our valuation v. Let bo denote the highest submitted bid so far, thus bo + δ is
the minimum bid amount. It immediately follows that if v < bo + δ then we
should not bid. On the other hand, if v ≥ bo + δ, then we have non-negative
expected payoffs by making a bid (as long as we bid below v).

Define as P the class of strategies which take the following form:

• if v < bo + δ, then do not bid

• if v ≥ bo + δ, then bid an amount in the interval [bo + δ, v]

Following the above reasoning, any strategy not in P is weakly dominated.
Thus, in equilibrium all bidders will play some strategy in P . Suppose bidder
i’s valuation is v ≥ bo+δ. Thus she places a bid b ∈ [bo+δ, v]. Note that bidder
i’s expected payoff depends on her valuation, her bid b, and what future bidders
do. Since future bidders play strategies in P , we know i will be outbid if and
only if at least one future bidder has valuation greater than or equal to b+δ. In
other words, as long as everyone plays a strategy in P , a bidder’s expected payoff
depends on future bidders’ valuations but not their exact bidding functions.

Denote by mf the number of future bidders, and denote by po = Pr(mf =
0|xv) the probability that there will be no future bidders. Let F 1(v) be the CDF
of the (posterior) distribution of the highest future bid given xv , conditioned on
having at least one future bidder. In other words,

F 1(v) = Emf |mf>0[F (v)mf] (3.5)

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 43

where F (v) is the CDF of the value distribution. F 1 and po depend on the
posterior distribution of the number of future bidders, Pr(mf |xv). If we can
generate samples of mf , then F 1 and po can be straightforwardly approximated.
Note that the set of bidders consists of past bidders (observed and hidden), the
current bidder, and future bidders. Thus we can generate mf using essentially
the same procedure as described in Section 3.4.1, by drawing m from g(m),
simulating the auction so far to get the number of already dropped bids |xd|,
then letting mf = m − |xv | − |xd| − 1. Note that we do not need to know the
exact equilibrium strategy to generate the hidden bidders; the knowledge that
the equilibrium strategy is in P is enough to determine whether a bidder should
bid or not.

Now we can write the expected payoff U(b, v) as:

U(b, v) = (1− po)F 1(b+ δ)(v − b) + po(v − b) (3.6)

Since v is fixed for each bidder, U(b, v) is then a function of b. We can then use
any standard numerical technique for function maximization in order to find
the optimal b∗ ∈ [bo + δ, v] that maximizes U .

Theorem 3. The following strategy (played by all bidders) is a Bayes-Nash
equilibrium of our auction setting:

• if v < bo + δ, do not bid.

• if v ≥ bo + δ, bid b∗ = arg maxb∈[bo+δ,v] U(b, v).

The proof is straightforward: first observe that this strategy is in P . We
have showed above that if everyone else is playing a strategy in P , then b∗ as
defined will maximize the bidder’s utility. It follows that if everyone is playing
the above strategy, then each bidder is playing a best response to the other
bidders’ strategies and so we have an equilibrium.

Learning the Distributions

At the beginning of Section 3.4.2 we assumed that the distributions f(v) and
g(m) were commonly-known. Now we relax this assumption. We assume that
we have access to the bidding histories of K past auctions, and consider the
problem of learning the distributions.

As in our online English auctions, some information is hidden from the
bidding history: the number and valuations of the bidders who decided not
to bid. As discussed in Section 3.3.1, the simple approach of ignoring these
hidden bidders could be expected to introduce bias to the estimates of f and
g. Furthermore, the observed bids are not equal to the bidders’ valuations; as
shown above the equilibrium bid is always lower than the valuation.

To correctly account for the hidden information, we use our EM algorithm
for game-theoretic settings, as described in Section 3.3.3. To implement the
EM algorithm, an important subproblem is reversing the equilibrium bidding
strategy. Formally, given a complete bidding history xv of an auction and the

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 44

current estimates f(v|θ) and g(m|λ), compute the corresponding valuations vv
such that bidders with valuations vv playing the equilibrium strategy would
have placed the bids xv .

Consider each bid bi ∈ xv . Denote by bo the previous observed bid. From
Section 3.4.2 we know that bi = arg maxb∈[bo+δ,v] U(b, v). There are two cases:

1. If bi > bo + δ, then bi must be a local maximum in [bo + δ, v] satisfying

the first-order condition ∂U(b,v)
∂b = 0. Solving for v, we get

v = bi +
F 1(bi + δ) + po/(1− po)

f1(bi + δ)
(3.7)

where f1 is the derivative of F 1. We can numerically approximate F 1, f1

and po by generating samples of mf in the same way as in Section 3.4.2.

2. Otherwise, bi = bo + δ. Intuitively, this means that the bidder’s valuation
is high enough to make a bid (i.e. v ≥ bo + δ), but not high enough to fall
into Case 1. Any bidder with a valuation in the interval

[
bo + δ, bo + δ +

F 1(bo + δ) + po/(1− po)
f1(bo + δ)

]

would bid in this way. Thus we generate samples of v by drawing from
f(v|θ) truncated to the above interval.

Once the EM algorithm has estimated the distributions f and g, our agent
can use these distributions to compute the Bayes-Nash equilibrium strategy as
described in Section 3.4.2.

3.5 Experiments

We evaluated both our EM learning approach and the simple approach6 on
several synthetic data sets and on real world data collected from eBay. We
compared the approaches in three ways:

1. Which approach gives better estimates of the distributions f(x), g(m) and
f1(x)? This is important because better estimation of these distributions
should give better results, regardless of whether agents take a decision-
theoretic approach or a game-theoretic approach to bidding. We measure
the closeness of an estimated distribution to the true distribution using
the Kullback-Leibler (KL) Divergence from the true distribution to the
estimated distribution. The smaller the KL Divergence, the closer the
estimated distribution to the true one.

6We also looked at the variant of the simple approach that directly estimates the dis-
tribution f1(x) using the selling prices. Our results show that this approach consistently
underestimates f1(x) as expected, and its performance is much worse than both the EM
approach and the simple approach. For clarity, detailed results on this approach are not
shown.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 45

2. For repeated online auction data, which approach gives better expected
payoff under the decision-theoretic bidding model, as described in Section
3.4.1?

3. For data from online auctions without proxies, which approach gives closer
estimates to the Bayes-Nash equilibrium under the game-theoretic bidding
model (i.e., computes ε-equilibria for smaller values of ε), as described in
Section 3.4.2?

Our experiments show that the EM learning approach outperforms the sim-
ple approach in all three ways, across a wide range of data sets.

3.5.1 Repeated Online Auctions

In this section we consider repeated online auctions, and thus attempt to answer
the first two questions above. We present results from four data sets:

• Data Set 1 has auctions of identical items, and we know the family of
distributions that f(x) and g(m) belong to.

• Data Set 2 has auctions of non-identical items, but we know the bid dis-
tribution f(x) is influenced linearly by an attribute a.

• Data Set 3 has auctions of identical items, but we do not know what kind
of distributions f(x) and g(m) are. We use nonparametric estimation
techniques to estimate the distributions.

• Data Set 4 is real-world auction data on identical items, collected from
eBay.

Synthetic Data Set 1: Identical Items

In this data set, the items for sale in all auctions are identical, so the number
of bidders and bid amounts come from stationary distributions g(m) and f(x).
f(x) is a Normal distribution N(4, 3.5). g(m) is a Poisson distribution shifted
to the right: g(m − 2) = P (40), i.e. the number of bidders is always at least
2. The bidding history is generated using our model of the bidding process
as described in Section 3.2. Each instance of the data set consists of bidding
history from 40 auctions. We generated 15 instances of the data set.

Estimating the Distributions Both estimation approaches are informed of
the parametric families from which f(x) and g(m) are drawn; their task is to
estimate the parameters of the distributions, (µ, σ) for f(x) and λ for g(m). At
the M step of the EM algorithm, standard ML estimates for µ, σ, and λ are
computed, i.e. sample mean of the bid amounts for µ, standard deviation of the
bid amounts for σ, and the mean of the number of bidders minus 2 (due to the
shifting) for the Poisson parameter λ.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 46

Our results show that the EM approach outperforms the simple approach in
the quality of its estimates for the distributions f(x), g(m) and f 1(x). Figure 3.2
shows typical estimated distributions7 and the true distributions. We observe
that the plot of the estimated f(x) by the simple approach is significantly shifted
to the right of the true distribution, i.e. the simple approach overestimated
f(x). We have also calculated KL Divergences from the true distributions to
the estimated distributions, and the EM estimations have consistently lower
KL Divergences. This difference was verified to be significant, using the non-
parametric Wilcoxon sign-rank test.

Bidding in Repeated Auctions Estimates from both approaches were used
to compute bidding strategies for an auction environment with 8 sequentially
held auctions of the same kind of items, using the decision-theoretic model
introduced in Section 3.4.1. The agent’s “actual” expected payoffsU1(b, v) under
these bidding strategies were then computed, using the true distributions. The
optimal bidding strategy and its expected payoff were also computed.

Our results show that the EM approach gives rise to bidding strategies closer
to the optimal strategy, and achieves higher expected payoffs, as compared to
the simple approach. Figure 3.3 shows a plot of the bidding strategies in the first
auction, and a box plot of the mean regrets, which is the differences between
optimal expected payoffs and actual expected payoffs. Formally, let b∗ denote
the optimal strategy and b̂ the strategy computed using estimated distributions,
then the regret given our agent’s valuation v is

R(v) = U1(b∗, v)− U1(b̂, v)

and the mean regret is the expected value of R(v) over the distribution of v,
which we set to be the same as the other bidders’ bid distribution f :

R̄ =

∫ ∞

−∞
R(v)f(v)dv

From the box plot we observe that the mean regret of the EM approach is much
smaller than that of the simple approach. The ratio between the mean regrets
of the EM and simple approaches is 1 : 56.

We also used the estimated distributions on the decision-theoretic model
with overlapping auctions, as described in Section 3.4.1. We again tested both
approaches on 8 sequentially held auctions, but now some early bidding activity
on each auction was generated. These results are shown in Figure 3.4. Again
we see that the EM approach achieves higher expected payoffs (and thus less
regret) compared to the simple approach. The EM approach seemed to benefit
more from the extra information of early bids than the simple approach: the
ratio between the mean regrets of the EM and simple approaches increased to
1 : 390.

7The distributions shown were randomly chosen from the 15 instances of the data set. We
have verified that the plots of the other distributions are qualitatively similar.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 47

−5 0 5 10 15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Bid Amount

Distribution of Bids

true
simple
EM

5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Bid Amount

Distribution of the Highest Bid

true
simple
EM

Figure 3.2: Results for Data Set 1, Distribution Estimation: distribution of bids
f(x) (left); distribution of highest bids f 1(x) (right).

2 4 6 8 10 12 14 16 18 20
2

3

4

5

6

7

8

9

10

Bidder Valuation

B
id

 A
m

ou
nt

Bidding Strategies in the First Auction

optimal
simple
EM

simple EM

0

0.05

0.1

0.15

0.2

0.25

0.3

R
eg

re
t

Payoff Regrets

Figure 3.3: Results for Data Set 1, Bidding: bidding strategies in the first
auction (left); box plot of payoff regrets of the two approaches (right).

Synthetic Data Set 2: Non-identical Items

In our second data set, the items on sale are not identical; instead the distribu-
tion of valuations are influenced by an observable attribute a. In this data set
the dependence is linear: f(x|a) = N(1.1a+ 1.0, 3.5). g(m) is a Poisson distri-
bution as before: g(m− 2) = P (35). For each auction, a is sampled uniformly
from the interval [3, 9]. In other words, this data set is similar to Data Set 1, ex-
cept that the bid distribution f(x) is drawn from a different parametric family.
Both approaches now use linear regression to estimate the linear coefficients.

Estimating the Distributions Again, our results show that the EM ap-
proach outperforms the simple approach for this data set, in terms of its esti-
mates for f(x) and g(m). Figure 3.5 (left) shows the estimated linear relation
between the mean of f(x|a) and a. From the figure we can see that the EM
approach gives a much better estimate to the linear function. The simple ap-
proach again significantly overestimates the bid amounts. In fact the simple

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 48

simple EM

0

0.02

0.04

0.06

0.08

0.1

0.12

R
eg

re
t

Overlapping Auctions: Payoff Regrets

Figure 3.4: Box plot of expected payoff regrets for overlapping auctions

3 4 5 6 7 8 9
2

4

6

8

10

12

14

a

m
ea

n
of

 f(
x|

a)

The mean of f(x|a) versus a

true
simple
EM

simple EM

0

0.005

0.01

0.015

0.02

0.025

R
eg

re
t

Payoff Regrets

Figure 3.5: Results for Data Set 2: Linear relationship between the mean of
f(x|a) and a (left). Box plot of payoff regrets (right).

approach has consistently overestimated f(x) for all the synthetic data sets we
tested.

Bidding in Repeated Auctions We then used the estimated distributions
to compute a decision-theoretic agent’s bidding strategies and expected payoffs
of an auction environment with 8 sequential auctions, where the attribute a
of each item is observed. The EM approach also gives better expected payoff,
the statistical significance of which is confirmed by Wilcoxon’s sign-rank test.
Figure 3.5 (right) shows a box plot of regrets from different instances of data
sets, which shows that the EM approach achieved consistently higher payoffs.

Synthetic Data Set 3: Unknown Distributions

We go back to the identical items model with stationary distributions f(x) and
g(m). For this data set, f(x) is a Gamma distribution with shape parameter
2 and scale parameter 3. g(m) is a mixture of two Poisson distributions: P (4)
with probability 0.6 and P (60) with probability 0.4. But now the estimation

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 49

approaches does not know the types of the true distributions. Instead, both
use kernel density estimation (kernel smoothing), a nonparametric estimation
strategy. Essentially, given N samples from a distribution p(x), we estimate
p(x) by a mixture of N kernel functions centered at the N samples.

Estimating the Distributions A Gaussian kernel is used for estimating
f(x) and a uniform kernel is used for estimating g(m). At each M step of the
EM algorithm, the bandwidth parameters of the two kernel estimations need
to be selected. We use the simple “rule of thumb” strategy [Silverman 1986]
for bandwidth selection. We used the same kernel estimation and bandwidth
selection technique for the simple approach.

Our results show that the EM approach gives better estimates than the
simple approach. Figure 3.6 shows typical estimated distributions and true dis-
tributions. From the figure we can observe that the EM estimates of f(x), g(m)
and f1(x) are much closer to the true distributions that the simple estimates.
The EM estimates have significantly smaller KL Divergences compared to the
simple estimates, verified by Wilcoxon’s sign-rank test.

Bidding in Repeated Auctions We then computed the expected payoffs
under the decision-theoretic model with 8 sequential auctions. The expected
payoffs of the EM approach were not significantly better than that of the simple
approach, as shown by the box plot in Figure 3.6. One possible explanation
is that although KL divergence is a good measure of similarity of distributions
in general, under this particular sequential auction decision-theoretic model KL
divergence might not be the best measure of quality. The bidding strategy as
defined in (3.4) and (3.3) is optimal if the distributions f and g are the true
underlying distributions. Using our estimated distributions, the resulting bid-
ding strategy may be higher or lower than the optimal bids. However from our
experience in these experiments, bidding too high is more costly than bidding
too low. This is not taken into account in the KL divergence computation as
well as our ML estimation procedure. This suggests that a possible future re-
search direction is to identify a loss function suited for the sequential auction
bidding model, and compute estimated distributions by minimizing that loss
function. Another possible approach is to compute a posterior distribution in-
stead of point estimates of the parameters in each iteration. For example, West
[1994] used Gibbs sampling techniques to compute the posterior distribution of
parameters in a relatively simple model of incomplete data. Bidding strategies
computed using the distribution of parameters should be free of the problem
mentioned above. However, this kind of approach would be more computation-
ally expensive.

eBay Data on Sony Playstation 2 Systems

Our experiments on synthetic data sets showed that our EM approach gave
good estimates of the true distributions in several different settings. However,
the synthetic data sets are generated using our model for the bidding process.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 50

−10 −5 0 5 10 15 20 25
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Bid Amount

Distribution of Bids

true
simple kernel
EM kernel

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of Bidders

Distribution of Number of Bidders

true
simple kernel
EM kernel

−10 −5 0 5 10 15 20 25 30 35
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Bid Amount

Distribution of Highest Bid

true
simple kernel
EM kernel

simple kernel EM kernel

0

0.05

0.1

0.15

0.2

R
eg

re
t

Payoff Regrets

Figure 3.6: Results for Data Set 3: Distribution f(x) (top-left). Distribution
g(m) (top-right). Distribution f 1(x) (bottom-left). Box plot of payoff regrets
(bottom-right).

Thus, the above experiments do not tell us whether our model for the bidding
process is an accurate description of what happens in real world online auctions.
To answer this question, we wanted to test our approach on real world bid data.
On eBay, the bidding histories of completed auctions are available for 30 days.
Unfortunately, information on the hidden bids, especially the proxy bids of the
winners of the auctions, is not publicly available. So unlike in the synthetic data
experiments, we cannot compare our estimated distributions with the “true”
distributions.8

To get around this problem, we used the following approach. First we col-
lected bidding histories from a set of eBay auctions. Next we pretended that
those highest bids were not placed, and the previously second highest bids were
the highest bids. We then “hid” these new highest bids of each auction. This
gave us a “ground truth” for the hidden bids which allowed us to evaluate our

8Of course we could have used our techniques to generate values for the missing bids;
however, this would have been unfair when the goal was to test these techniques!

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 51

different approaches. It is true that this approach of hiding bids changed the
underlying distribution of bids; however, this did not worry us as our goal was
not to learn the true distribution of bids in our eBay auctions. Instead, our goal
was to evaluate our algorithms’ performance on a realistic, non-synthetic data
set. We believe that despite the removal of the high bid our data set preserves
qualitative characteristics of the original bidding history data. If our model of
the bidding process is correct, then our EM approach should be able to cor-
rectly account for the hidden bids in this data set and produce good estimates
of f1(x).

We collected bidding history of eBay auctions on brand new Sony Playstation
2 (Slim Model) consoles, over the month of March 2005. We chose to study these
auctions because they had been previously studied by Shah et al. [2003], who
argued that bidders’ valuations on Playstations tend to be close to the private
value model. We considered only auctions that lasted one day and had at least
3 bidders.9 We found 60 auctions that satisfied these requirements. We then
randomly divided our data into a training set and a testing set.

Estimating the Distributions We tested four learning approaches: the EM
and simple approaches that estimate a Normal distribution for f(x) and a Pois-
son distribution for g(m), and the EM and simple approaches that use kernel
density estimation to estimate f(x) and g(m). Of course we did not have a
ground truth for these distributions, so it was not possible to compare the ac-
curacy of the predictions. However, we could use both approaches’ estimates to
estimate f1(x) based on the training set, and compare these estimates against
the highest bids from the test set. We did 8 runs of this experiment with dif-
ferent random partitions of training set and testing set, and aggregated the
results. The KL Divergences of f 1(x) of the approaches were similar, and no
one approach was significantly better than the others.

Bidding in Repeated Auctions We then computed the expected payoffs
under the decision-theoretic model. The EM approaches achieved significantly
higher payoffs than the simple approaches, as shown in Figure 3.7. The ap-
proaches using parametric models achieved similar payoffs to the corresponding
approaches with kernels. The good performance of the parametric estimation
EM approach for the eBay data set indicates that the Normal and Poisson mod-
els for f(x) and g(m) may be adequate models for modeling bidding on eBay.

The EM approaches did not have better KL divergence than the simple ap-
proaches, but nevertheless outperformed the simple approaches in the repeated
auction experiments. This is similar to our situation in Data Set 3. Our ex-
periments have shown that there is a positive correlation between better KL
divergence and better performance in repeated auctions, but that this correla-
tion is not perfect.

9We needed at least 3 bidders so that we could drop one and still have one observed bid.

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 52

simple simple kernel EM EM kernel

0

1

2

3

4

5

R
eg

re
t

Payoff Regrets

Figure 3.7: Box plot of payoff regrets on the eBay Data Set

3.5.2 Online Auctions without Proxies

We built a data set modeling online auctions without proxies in order to compare
the EM approach against the simple approach in the game-theoretic setting
described in Section 3.4.2. Thus, in this section we consider questions 1 and 3
from the list at the beginning of Section 3.5.

Similar to Section 3.5.1, we use a normal distribution N(5.0, 2.0) for f(v)
and a shifted Poisson distribution (with λ = 10) for g(m). Each instance of the
data set consists of bidding histories from 30 auctions.

Estimating the Distributions As might be expected from the results in the
previous section, we found that the EM approach gave much better estimates
of f(v) and g(m) than the simple approach. Figure 3.8 shows typical estimated
distributions and the true distributions.

Estimating the Bayes-Nash Equilibrium We then compared the game-
theoretic bidding agents that would have been built using the distributions esti-
mated by the two learning approaches. Unlike in Section 3.5.1, we cannot sim-
ply use expected payoff as a measure of performance, since in a game-theoretic
setting our payoff depends other agents’ strategies; for example, a bad approxi-
mation to an equilibrium could actually lead to increased payoffs for all agents.
(Consider e.g., the prisoner’s dilemma.) Instead, what we can measure is the
amount that each player could gain by unilaterally deviating from the current
strategy at the “equilibrium” strategy profile computed using each learning ap-
proach. One way of thinking of this value relates to the concept of ε-equilibrium.
(Recall that a strategy profile is an ε-equilibrium if each agent can gain at most
ε by unilaterally deviating from the strategy profile.) Every strategy profile is

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 53

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

v

Distribution of Valuations

true
simple
EM

2 4 6 8 10 12 14 16 18
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

m

Distribution of Number of Bidders

true
simple
EM

Figure 3.8: Results for Online Auctions without Proxies: the value distributions
f(v) (left); the distributions of number of bidders g(m) (right).

an ε-equilibrium for some ε; what we compute is the smallest ε for which the
learned strategies form an ε-equilibrium.

For our auction setting, we observe (from Theorem 3) that no matter what
distributions we use for f and g, our agents will play a strategy in P . As a
result, the true equilibrium strategy (computed from Theorem 3 using the true
distributions) is always a best response to the strategies our agents play. Given
our agent’s valuation v and observed bidding history so far xv , we can compute
the difference between the expected payoff of the best response and the expected
payoff of our agent’s strategy. The ε for the game is then the expectation
of this difference over v, m, and bidding history xv . We approximate this
expectation by sampling v, m, xv and taking the mean of the payoff differences.
We generated bidding histories for 20 auctions using each approach, and for
each bidder in these auctions we computed expected payoff differences for 50
valuations v drawn from the true f(v).

Our results show that strategy profiles computed using the EM approach
are epsilon-equilibria for much smaller values of ε than the strategy profiles
computed using the simple approach. This means that the EM bidding agent’s
strategy is much closer to the true equilibrium. We computed ε for 15 instances
of the training data set, and Figure 3.9 gives a box plot of the resulting ε’s.

3.6 Related Work

Our EM approach is similar in spirit to an approach by Boutilier et al. [1999].
This work concerns a decision-theoretic MDP approach to bidding in sequential
first-price auctions for complementary goods. For the case when these sequen-
tial auctions are repeated, this paper discusses learning a distribution of other
agents’ highest bids for each good, based on the winning bids in past auctions.
If the agent’s own bid wins in an auction, the highest bid by the other agents
is hidden because only the winning bid is revealed. To overcome this problem
of hidden bids, the paper uses an EM approach to learn the distribution of the

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 54

simple EM

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

ep
si

lo
n

epsilon−equilibria

Figure 3.9: Results for Online Auctions without Proxies: box plot of epsilon-
equilibria using the simple and EM approaches

highest bid.
In our English auction setting the highest bids are always hidden, and thus

cannot be directly estimated. Instead we have to estimate the distributions of
bids f(x) and of number of bidders g(m)—which requires us to take into account
bids other than the highest—and then compute the distribution of highest bids
using f(x) and g(m). As a result the learning task in our domain is more
complicated than the problem considered by Boutilier et al. [1999].

Several other papers have tried to solve the hidden bid problem in various
auction settings. Rogers et al. [2005] studied English auctions with discrete bid
levels. They discussed estimating the distributions of valuations and numbers of
bidders (f and g) from data, then using the estimated distributions to compute
an optimal set of bid levels (including the reserve price) for the auctioneer. Their
learning approach is to look at only the final prices of the auctions, and then to
use Bayesian inference to compute posterior distributions of the parameters of
f and g given the final prices of previous auctions. We note that this approach
ignores all the earlier bids, which carry information about f and g, while our
approach uses all bids observed. Furthermore, Rogers et al.’s [2005] approach
works only for parametric distributions. If the true underlying distributions
are not in the chosen parametric family of distributions, parametric estimation
tends to give poor results. In Section 3.5.1 we showed that our approach can
use nonparametric estimation techniques (kernel density estimation). Finally,
the method of [Rogers et al. 2005] needs to compute the joint distribution of
multiple parameters, which takes exponential time in the number of parameters.
Our EM approach only tries to compute ML/MAP estimates of the parameters,
so each iteration of EM scales roughly linearly with the number of parameters.

Another relevant paper is [Song 2004]. Like us, Song studies the estimation
problem in online English auctions in eBay-like environments. However she used
a different approach, based on the theoretical result that the second- and third-
highest valuations uniquely identify the underlying value distribution. However,
applying this fact to the eBay model presents a problem: while the highest

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 55

observed bid corresponds to the second-highest valuations, the second-highest
observed bid is not necessarily the third-highest valuation. This is because the
first- or second- highest bidders may have submitted bids higher than the third-
highest value before the third-highest valued bidder had a chance to submit her
final bid, which means her bid can be hidden from the bidding history. Thus the
second-highest observed bid is sometimes less than the third-highest valuation,
and ignoring this fact would introduce bias to the estimation. Song recognizes
this problem, and her solution is to use data from auctions in which the first- or
second-highest bidder submitted bids higher than the second-highest observed
bid late in the auction, because these auctions have relatively higher probability
that their second-highest observed bids are third-highest valuations. However,
this approach merely reduces expected bias rather than avoiding it entirely.
Indeed, we note that there is empirical evidence [Roth and Ockenfels 2002] that
bidding activity late in auctions has much higher density than earlier bidding
activity. This suggests that even for the selected auctions of Song’s approach,
there may be significant probability that second-highest observed bids are less
than third-highest valuations. Our approach models the hidden bidders, so
does not suffer from the bias introduced in her approach, and does not need
to drop any auctions from consideration. Finally, Song [2004] did not discuss
how to estimate the distribution of the number of bidders, which is essential
for computing optimal bidding strategies in our repeated auctions setting (see
Section 3.4).

Haile and Tamer [2003] analyzed a different form of the hidden bid problem:
a bidder may have submitted an earlier bid below her valuation, then the current
price rises above her valuation, so she does not bid again. As a result, bidders’
final observed bids may be below their valuations. Haile and Tamer [2003]
proposed a method to compute bounds on the value distributions given the
observed bids. In our model, bidders’ final observed bids coincide with their
willingness to pay, so this issue is not addressed in our current model. On the
other hand, Haile and Tamer’s [2003] approach was intended for physical (as
opposed to online) auctions, where there are no fixed closing times, and the
number of potential bidders are assumed to be known. Thus their approach
cannot be directly applied to online auctions where the number of bidders are
inherently unknown. An interesting future research direction is to combine our
approach that deal with hidden bidders with Haile and Tamer [2003]’s technique
for bounding the valuation distribution.

3.7 Conclusion

In this chapter we have described techniques for building bidding agents in online
auction settings that include hidden bids. In particular, we have addressed the
issue of estimating the distributions of the number of bidders and bid amounts
from incomplete auction data. We proposed a learning approach based on the
EM algorithm that takes into account the missing bids by iteratively generating
missing bids and doing maximum likelihood estimates on the completed set of

Chapter 3. Bidding Agents for Online Auctions with Hidden Bids 56

bids. We applied our approach to both decision-theoretic and game-theoretic
settings, and conducted experiments on both synthetic data as well as on eBay
data. Our results show that our approach never did worse and often did much
better than the the straightforward approach of ignoring the missing data, both
in terms of the quality of the estimates and in terms of expected payoffs under
a decision theoretic bidding model.

57

Bibliography

Altman, Alon and Moshe Tennenholtz (2005). Ranking systems: The PageR-
ank axioms. ACM Conference on Electronic Commerce.

Andrieu, C., N. de Freitas, A. Doucet and M.I. Jordan (2003). An introduction
to MCMC for machine learning. Machine Learning.

Anthony, P., W. Hall, V.D. Dang and N. Jennings (2001). Autonomous agents
for participating in multiple online auctions. IJCAI Workshop on EBusiness
and the Intelligent Web.

Arora, A., H. Xu, R. Padman and W. Vogt (2003). Optimal bidding in se-
quential online auctions. Working Paper.

Athey, S. and P. Haile (2002). Identification in standard auction models.
Econometrica, 70(6), 2107–2140.

Bhat, N. and K. Leyton-Brown (2004). Computing Nash equilibria of action-
graph games. UAI.

Blum, B., C. Shelton and D. Koller (2002). Gametracer.
http://dags.stanford.edu/Games/gametracer.html.

Boutilier, C., M. Goldszmidt and B. Sabata (1999). Sequential auctions for
the allocation of resources with complementarities. IJCAI.

Bowling, M. (2004). Convergence and no-regret in multiagent learning. NIPS.

Bowling, M. and M. Veloso (2001). Convergence of gradient dynamics with a
variable learning rate. ICML.

Byde, A (2002). A comparison among bidding algorithms for multiple auctions.
Agent-Mediated Electronic Commerce IV.

Cai, G. and P.R. Wurman (2003). Monte Carlo approximation in incomplete-
information, sequential-auction games (Technical Report). North Carolina
State University.

Chen, X. and X. Deng (2005). Settling the complexity of 2-player Nash equi-
librium (Technical Report TR05-150). ECCC.

Conitzer, V. and T. Sandholm (2003). Complexity results about Nash equilib-
ria. IJCAI.

Bibliography 58

Daskalakis, C., P. W. Goldberg and C. H. Papadimitriou (2005). The complex-
ity of computing a Nash equilibrium (Technical Report TR05-115). ECCC.

Dempster, A., N. Laird and D. Rubin (1977). Maximum likelihood from in-
complete data via the EM algorithm. Journal of the Royal Statistical Society,
39(1), 1–38.

Goldberg, P.W. and C.H. Papadimitriou (2005). Reducibility among equilib-
rium problems (Technical Report TR05-090). ECCC.

Golle, Philippe, Kevin Leyton-Brown, Ilya Mironov and Mark Lillibridge
(2001). Incentives for sharing in peer-to-peer networks. International Work-
shop on Electronic Commerce (WELCOM).

Govindan, S. and R. Wilson (2003). A global Newton method to compute
Nash equilibria. Journal of Economic Theory.

Govindan, S. and R. Wilson (2004). Computing Nash equilibria by iterated
polymatrix approximation. Journal of Economic Dynamics and Control, 28,
1229–1241.

Greenwald, A. and J. Boyan (2004). Bidding under uncertainty: Theory and
experiments. UAI.

Haile, Philip A. and Elie Tamer (2003). Inferences with an incomplete model
of English auctions. Journal of Political Economy, 111(1), 1–51.

Kearns, M.J., M.L. Littman and S.P. Singh (2001). Graphical models for game
theory. UAI.

Klemperer, P. (2000). Auction theory: A guide to the literature. In P. Klem-
perer (Ed.), The economic theory of auctions. Edward Elgar.

Koller, D., N. Megiddo and B. von Stengel (1994). Fast algorithms for finding
randomized strategies in game trees. STOC.

Koller, D. and B. Milch (2001). Multi-agent influence diagrams for representing
and solving games. IJCAI.

LaMura, P. (2000). Game networks. UAI.

Leyton-Brown, K. and M. Tennenholtz (2003). Local-effect games. IJCAI.

Mackie-Mason, J.K., A. Osepayshvili, D.M. Reeves and M.P. Wellman (2004).
Price prediction strategies for market-based scheduling. Fourteenth Interna-
tional Conference on Automated Planning and Scheduling (pp. 244–252).

Milgrom, P. and R. Weber (2000). A theory of auctions and competitive
bidding, II. In P. Klemperer (Ed.), The economic theory of auctions. Edward
Elgar.

Bibliography 59

Osepayshvili, A., M.P. Wellman, D.M. Reeves and J.K. Mackie-Mason (2005).
Self-confirming price prediction for simultaneous ascending auctions. UAI.

Papadimitriou, C.H. (2005). Computing correlated equilibria in multiplayer
games. STOC.

Porter, R., E. Nudelman and Y. Shoham (2004). Simple search methods for
finding a Nash equilibrium. AAAI (pp. 664–669).

Powers, R. and Y. Shoham (2004). New criteria and a new algorithm for
learning in multiagent systems. NIPS.

Regev, O. and N. Nisan (1998). The popcorn market: Online markets for
computational resources. International Conference on Information and Com-
putation Economies.

Rogers, A., E. David, J. Schiff, S. Kraus and N. R. Jennings (2005). Learn-
ing environmental parameters for the design of optimal english auctions with
discrete bid levels. International Workshop on Agent-Mediated E-Commerce.
Utrecht, Netherlands.

Rosenthal, R.W. (1973). A class of games possessing pure-strategy Nash equi-
libria. Int. J. Game Theory, 2, 65–67.

Roth, A.E. and A. Ockenfels (2002). Last-minute bidding and the rules for
ending second-price auctions: Evidence from eBay and Amazon auctions on
the internet. American Economic Review.

Roughgarden, T. and E. Tardos (2004). Bounding the inefficiency of equilibria
in nonatomic congestion games. Games and Economic Behavior, 47(2), 389–
403.

Shah, H.S., N.R. Joshi, A. Sureka and P.R. Wurman (2003). Mining for bidding
strategies on eBay. Lecture Notes on Artificial Intelligence.

Silverman, B.W. (1986). Density estimation. London: Chapman and Hall.

Song, Unjy (2004). Nonparametric estimation of an eBay auction model with
an unknown number of bidders. University of British Columbia.

Stone, P., R.E. Schapire, J.A. Csirik, M.L. Littman and D. McAllester (2002).
Attac-2001: A learning, autonomous bidding agent. Agent-Mediated Electronic
Commerce IV (pp. 143–160).

van der Laan, G., A.J.J. Talman and L. van der Heyden (1987). Simplicial
variable dimension algorithms for solving the nonlinear complementarity prob-
lem on a product of unit simplices using a general labelling. Mathematics of
OR, 12(3), 377–397.

Bibliography 60

Waldspurger, C.A., T. Hogg, B. A. Huberman, J. O. Kephart and W. S. Stor-
netta (1992). Spawn: A distributed computational economy. IEEE Transac-
tions on Software Engineering.

Weber, R. (1983). Multi-object auctions. In R. Engelbercht-Wiggans, M. Shu-
bik and R. Stark (Eds.), Auctions, bidding, and contracting: Uses and theory,
165–191. New York University Press.

Wellman, M.P., A. Greenwald, P. Stone and P.R. Wurman (2002). The 2001
Trading Agent Competition. IAAI.

West, M. (1994). Discovery sampling and selection models. In J.O. Berger and
S.S. Gupta (Eds.), Decision theory and related topics IV. New York: Springer
Verlag.

Zhang, N.L. and D. Poole (1996). Exploiting causal independence in bayesian
network inference. JAIR, 5, 301–328.

