
Computing Pure Strategy Nash Equilibria
in Compact Symmetric Games

Christopher Thomas Ryan
Sauder School of Business

University of British Columbia
2053 Main Mall, Vancouver,

BC, Canada, V6T 1Z2
chris.ryan@sauder.ubc.ca

Albert Xin Jiang
Department of

Computer Science
University of British Columbia
2366 Main Mall, Vancouver,

BC, Canada, V6T 1Z4
jiang@cs.ubc.ca

Kevin Leyton-Brown
Department of

Computer Science
University of British Columbia
2366 Main Mall, Vancouver,

BC, Canada, V6T 1Z4
kevinlb@cs.ubc.ca

ABSTRACT
We analyze the complexity of computing pure strategy Nash equi-
libria (PSNE) in symmetric games with a fixed number of actions.
We restrict ourselves to “compact” representations, meaning that
the number of players can be exponential in the representation
size. We show that in the general case, where utility functions are
represented as arbitrary circuits, the problem of deciding the ex-
istence of PSNE is NP-complete. For the special case of games
with two actions, we show that there always exists a PSNE and
give a polynomial-time algorithm for finding one. We then focus
on a specific compact representation: piecewise-linear utility func-
tions. We give polynomial-time algorithms for finding a sample
PSNE, counting the number of PSNEs, and also provide an FPTAS
for finding social-welfare-maximizing equilibria. We extend our
piecewise-linear representation to achieve what we believe to be the
first compact representation for parameterized families of (symmet-
ric) games. We provide methods for answering questions about a
parameterized family without needing to solve each game from the
family separately.

Categories and Subject Descriptors
J.4 [Social and Behavioral Sciences]: Economics

General Terms
Theory, Economics, Algorithms

Keywords
game theory, symmetric games, rational generating functions

1. INTRODUCTION
In the last decade, there has been much research at the interface

of computer science and game theory (see e.g. [26, 31]). One
fundamental class of computational problems in game theory is
the computation of solution concepts of finite games. Much recent

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EC’10, June 7–11, 2010, Cambridge, Massachusetts, USA.
Copyright 2010 ACM 978-1-60558-822-3/10/06 ...$10.00.

effort in the literature has concerned the complexity of computing
mixed-strategy Nash [7, 9, 10, 12] and correlated equilibria [19, 27].

In this paper we focus on the problem of computing pure strategy
Nash equilibria (PSNE) [6, 11, 16–18]. Unlike mixed-strategy Nash
equilibria, which are guaranteed to exist for finite games [25], in
general PSNE are not guaranteed to exist. Nevertheless, in many
ways PSNE is a more attractive solution concept than mixed-strategy
Nash equilibrium. First, PSNE can be easier to justify because it
does not require players to randomize. Second, it can be easier to an-
alyze because of its discrete nature (see, e.g., [6]). There are several
versions of the problem of computing PSNEs: deciding if a PSNE
exists, finding one, counting the number of PSNEs, enumerating
them, and finding the optimal equilibrium according to some objec-
tive (e.g., social welfare). The latter problems are game-theoretically
more useful, but often computationally harder.

The complexity of each of these problems very much depends on
the representation used. Normal form is the traditional choice. In
this representation, each player’s utilities are specified explicitly for
each pure strategy profile. Questions about PSNE can be answered
in time polynomial in the input size, by checking every pure strat-
egy profile. However, the size of the normal form representation
grows exponentially in the number of players. This is problematic
in practice, especially since many games of interest involve large
numbers of players.

Fortunately, most large games of practical interest have highly-
structured payoff functions, and thus it is possible to represent
them compactly. A line of research thus exists looking for compact
game representations that are able to succinctly describe structured
games, and efficient algorithms for finding equilibria that run in
time polynomial in the size of the representation. The problem of
computing PSNE of compactly-represented games is hard in the
most general case, when utility functions are arbitrary efficiently-
computable functions represented as Turing Machines [1] or circuits
[30]. Researchers have also studied compact game representations
that exploit various types of structure in utility functions. These
include graphical games [20], congestion games [28] and action-
graph games [5]. Computing PSNE for each of these representations
is hard in general, but polynomial time for certain subclasses of
games [11, 13, 16–18].

One important type of structure is symmetry. A game is symmet-
ric when all players are identical and interchangeable. Symmetric
games have been studied since the beginning of noncooperative
game theory. For example, Nash proved that symmetric games
always have a symmetric mixed Nash equilibrium [25]. In a sym-
metric game, a player’s utility depends only on the player’s chosen
action and the configuration, which is the vector of integers spec-
ifying the number of players choosing each of the actions. As a

result, symmetric games can be represented more compactly than
games in normal form: we only need to specify a utility value for
each action and each configuration. For a symmetric game with
n players and m actions per player, the number of configurations
is
`
n+m−1
m−1

´
. With fixed m, this grows like nm−1, and Θ(nm−1)

numbers are required to specify the game. Questions about PSNE
can be answered straightforwardly by checking all configurations,
which requires polynomial time in the size of the representation,
and polynomial time in n when m is fixed. Indeed, Brandt et al. [6]
proved that the existence problem for PSNE of symmetric games
with constant number of actions is in AC0.

Existing work on symmetry in games focuses on utility func-
tions that explicitly enumerate utility values for each configuration.
However, more concise representations are possible when utility
functions have additional structure. In symmetric games, the set
of players can be specified implicitly by the integer n, requiring
only logn bits to represent. If utility functions can be represented
in size polynomial in the number of bits needed to represent the
configuration vector, the game can be represented in size polynomial
in logn. Thus, such a “compact” representation is able to specify
games with a number of players exponential in the input size.

In this paper, we consider the complexity of computing PSNE for
symmetric games with compactly-represented utility functions. We
first look at the most general setting, where the utility functions are
represented as circuits whose inputs are binary representations of
the configuration vector. We show that even with a fixed number
of actions, the problem of deciding the existence of PSNE is NP-
complete. The only exception is the case of two actions, for which
we show that there always exists a PSNE and present an algorithm
that identifies such an equilibrium in polynomial time.

Our main positive result is the identification of a compact repre-
sentation of utility with nice computational properties—piecewise
linear functions of the configuration vector. Piecewise linear func-
tions are a natural and convenient way of representing utilities. For
this setting, we present novel algorithms for finding a sample PSNE
and for counting the number of PSNEs. When the number of actions
is fixed, these algorithms run in polynomial time. In particular, if
the total number of pieces is bounded by a polynomial of logn,
then we achieve an exponential improvement over the algorithm of
Brandt et al. [6], which scales polynomially with n. Our techniques
also yield a polynomial-space, polynomial-delay output-sensitive
algorithm for enumerating the set of PSNE, and an FPTAS for finding
social-welfare maximizing equilibria.

Furthermore, we are able to extend this piecewise-linear rep-
resentation to model parameterized families of symmetric games.
While existing literature on equilibrium computation focused on
finding equilibria in a single game, in many practical applications of
game-theoretic analysis we are interested in questions about Nash
equilibria of a family of games. For example, in mechanism design,
the designer may want to choose from a family of games so that
an equilibrium of the chosen game maximizes a given objective.
As another example, an econometrician may be given data about
agents’ observed behavior and wants to estimate parameters of the
underlying game. To address such problems, existing equilibrium
computation approaches would be forced to solve many individual
games from the family, which can be very costly. Our parame-
terized symmetric games are to our knowledge the first compact
representation of parameterized families of games. Leveraging this
representation, we provide a methodology for solving optimization
problems over PSNE of a family of symmetric games, without hav-
ing to solve each individual game in the family. These include the
problem of finding parameters that ensure equilibria that are close to

some observed configuration, and the problem of finding parameters
that maximize the equilibrium payoff for the worst-off player.

The main challenge in constructing such polynomial-time algo-
rithms is that the set of configurations (and, indeed, the set of PSNEs)
can be exponential in the input size. Thus, approaches based on
enumerating all configurations require exponential time. Further-
more, the constraints defining PSNE are not generally convex, so
the problem cannot be formulated as an integer linear program in
fixed dimension. Instead, our approach encodes the set of PSNEs in
a compact form that has appealing computational properties. Specif-
ically, we make use of the rational generating function method
for representing and computing with sets of lattice points, due to
Barvinok and Woods [4]. We model configurations as integer lattice
points, and formulate the set of equilibrium configurations via opera-
tions on sets of lattice points in polyhedra; the resulting set of points
can be encoded as a rational generating function of polynomial size.

The current paper relates to recent work coauthored by one of us
[21]. This previous work introduced rational generating function
methods to the algorithmic study of games, showing that they can
be used to compute pure-strategy Nash equilibria of games in which
the actions are lattice points in fixed-dimensional polyhedra and
the utilities are given by piecewise linear functions. These results
assumed a fixed number of players and made strong restrictions on
the piecewise linear functions used to represent utilities. The key
conceptual difference between the current paper and [21] is that
lattice points are used to represent different things. In [21] lattice
points directly represent actions, making the result more direct
but the model more restrictive (actions scale in a restricted way
and players are fixed). In the current paper’s setting of symmetric
games, lattice points arise more naturally as configurations, and
the number of players scales freely and instead we fix the number
of actions. The difference in setting from [21] gives rise to novel
technical challenges, requiring different proof techniques based on
disjoint set decompositions rather than [21]’s approach using integer
projections. Furthermore, computing social welfare maximizing
PSNEs (Section 4) presents a novel difficulty because in our setting
social welfare becomes a non-linear function. We overcome this
difficulty by adapting an FPTAS result of [14].

2. SYMMETRIC GAMES
A strategic game is defined by the tuple (n, {Ai}1≤i≤n, {Ui}1≤i≤n)

where n is the number of players, and for each player i, Ai is her set
of actions and Ui :

Q
j Aj → Z is her utility function. Throughout

the paper we assume that utilities are integer-valued.1

Symmetric games are a class of strategic games in which each
player has an identical set of actions A and for all permutation of
players π : {1, . . . , n} → {1, . . . , n},

Ui(a1, . . . , an) = Uπ(i)(aπ(1), . . . , aπ(n)).

We consider n-player symmetric games in which the number of
actions m is a fixed constant.

The outcomes of the game are sufficiently described by configura-
tions of players; that is, a count of how many players take each action.
A configuration is an m-dimensional vector x = (xa : a ∈ A),
where xa is the number of players taking action a. Let D denote
the set of configurations:

D =

(
x ∈ Zm :

X
a∈A

xa = n, xa ≥ 0 for all a ∈ A

)
. (1)

1Since the set of PSNEs of a game is unchanged under scaling of
its utilities by a constant, games with rational-valued utilities can be
transformed to equivalent games with integer utilities.

The utility of a given player in a symmetric game depends only
on the action played and the overall configuration. For each action
a ∈ A, we have a function ua defined over configurations in which
at least one player takes action a. In particular, ua(x) is the utility
of playing action a in configuration x (provided xa ≥ 1). The set
of functions ua for all a ∈ A is sufficient for specifying the utilities
of the game. For the rest of the paper we call these ua the utility
functions and will not refer to the functions Ui.

A configuration x ∈ D is a pure strategy Nash equilibrium
configuration (or simply a PSNE) if for all actions a and a′ either no
player takes action a or the utility of a player playing action a is no
less than the utility he would receive from unilaterally deviating to
action a′. Symbolically, letN denote the set of PSNE in a symmetric
game. Then x is an element of N if for all a ∈ A either xa = 0 or
for all a′ ∈ A, ua(x) ≥ ua′(x+ea′−ea), where ea is the ath unit
vector with components eaa = 1 and eaa′ = 0 for a′ 6= a. Note
that x + ea′ − ea is the same configuration as x except that one
player has deviated from playing action a to action a′. Similarly,
for an integer ε ≥ 0, a configuration x is an ε-PSNE if for all a ∈ A
either xa = 0 or for all a′ ∈ A, ua(x) + ε ≥ ua′(x + ea′ − ea).
In other words, each player in an ε-PSNE can gain at most ε by
deviating from her current strategy.

2.1 Symmetric games with utilities represented
as circuits

We want the utility functions to be compactly represented and
efficiently computable. One approach is to model utility functions as
circuits, as was done in previous work for general games [30]. In this
subsection, we consider circuit symmetric games, a representation in
which each utility function ua is represented as a circuit whose input
is a binary representation of the configuration vector x and output
is a binary representation of the corresponding integer utility value.
Since circuits can represent arbitrary integer functions of the inputs,
this can represent all symmetric games with integer utilities. When
utility functions can be specified as circuits with small numbers of
gates, the representation size can be as small as O(logn).

We first consider the case with two actions, A = {1, 2}. In
this case the game always has a PSNE. This follows from the fact
that such a game can be formulated as a congestion game, which
implies the existence of a PSNE [28]. (To see this, observe that
u1(x) = u1(x1, n−x1) is a function of only x1; similarly u2(x) =
u2(n−x2, x2) is a function of only x2.) The claim was also proven
from first principles by [8].

However, even when a PSNE provably exists (or when a game is
a congestion game), PSNEs can still be difficulty to find. We give
an alternative proof of the existence of PSNE for these games that
illustrates the structure of the strategy space, and then show how
this structure can be exploited for efficient computation.

LEMMA 1. Any symmetric game with two actions has a PSNE.

PROOF. Given such a symmetric game, we construct the devia-
tion graph, whose vertices are the configurations x ∈ D. There is
a directed edge from x to x′ if and only if a deviation by a single
player from x results in x′. Since each x = (x1, n − x1), where
x1 is the number of agents playing action 1, we can identify each
configuration by its first component. Under this mapping, the set of
configurations corresponds to the set of integers {0, . . . , n}. It is
straightforward to see that the only edges in the deviation graph are
between adjacent integers: i, j ∈ {0, . . . , n} such that |i− j| = 1.

We then consider the profitable deviation graph (PDG), whose
vertices are the same configurations and directed edges represent
strictly profitable deviations. For example, if a deviation by one
player in configuration x from action a to action 3 − a results in

configuration x′, and furthermore if u3−a(x′) > ua(x), then the
PDG has an edge from x to x′. Observe that the PDG is a subgraph
of the deviation graph, and that if there is an edge from x to x′ in
the PDG, then there cannot be an edge from x′ to x.

A sink of the PDG has no profitable deviations, which means that
it is a PSNE. We claim that the PDG must have a sink. To see this,
we can start at vertex 0 and follow the directed edges. Because the
PDG is a subgraph of the deviation graph, each edge on this path
must increase the vertex’s index (in fact, by exactly one). Thus, the
path must eventually stop at a sink.

This proof suggests a straightforward algorithm for finding a
PSNE: start at configuration 0 and follow the edges in the PDG. In
fact by a similar argument any starting configuration would lead
to a sink. Unfortunately this approach can take Ω(n) steps before
reaching a sink, which can be exponential in the representation size.
Instead, we present a divide-and-conquer approach that exploits the
structure of the PDG.

THEOREM 2. For circuit symmetric games with two actions, a
PSNE can be found in polynomial time.

PROOF. Given such a game with n players, consider the configu-
rations bn

2
c and bn

2
c+ 1. There are three cases:

1. If there is an edge from bn
2
c to bn

2
c + 1 in the PDG, then

there must exist a PSNE in the subset {bn
2
c + 1, . . . , n}.

This is because a path from bn
2
c+ 1 must be increasing and

eventually stop at a sink.

2. Likewise, if there is an edge from bn
2
c+ 1 to bn

2
c, there must

exist a PSNE in the subset {0, . . . , bn
2
c}, since a path from

bn
2
c must be decreasing and stop at a sink.

3. If there is no edge between the two configurations, then there
must exist a PSNE in each of the subsets {0, . . . , bn

2
c} and

{bn
2
c+ 1, . . . , n}).

Our algorithm picks a subset that contains a PSNE, and then recur-
sively bisects that subset. This process terminates at a PSNE after
O(logn) iterations. For each iteration, checking the existence of
edges between two configurations requires evaluation of utility at
the two configurations, which can be done in linear time for utility
functions represented as circuits. Therefore the running time of this
algorithm is O(|Γ| logn), where |Γ| is the size of the circuits.

Our next result shows that the problem of finding a PSNE in a
circuit symmetric game becomes intractable once we go beyond two
actions.

THEOREM 3. For circuit symmetric games in which the num-
ber of actions is a fixed constant of at least three, the problem of
determining the existence of PSNE is NP-complete.

The proof follows from a reduction from CIRCUITSAT, and is given
in Appendix A.

2.2 Symmetric games with piecewise linear util-
ities

The hardness result of Theorem 3 suggests that the circuit sym-
metric game representation is too general to be computationally
useful in the worst case: it is powerful enough to encode NP-hard
problems. Thus, computation of PSNE is intractable even if the
representation is compact.

In this subsection and the rest of the paper, we consider util-
ity functions represented as piecewise-linear functions. Piecewise-
linear functions have been widely used as an approximation of

arbitrary continuous functions. A recent example of their use in an
economic context is [15], which considered piecewise-linear utili-
ties in the computation of market equilibria in the Arrow-Debreu
model, and presented a polynomial-time algorithm when utilities
are piecewise-linear concave functions and the number of goods is
constant.

Piecewise linear functions are normally defined over continuous
domains, in which case it is sufficient to specify a polytopal subdivi-
sion of the domain and an affine function for each cell. The domain
for our utility functions is the set of configurations D, a discrete
set. Nevertheless we observe that D is the set of integer points in a
polytope. Thus the definition of piecewise linear functions can be
naturally extended to this setting. In particular, we specify a set of
polytopes that induces a partition of the integer points D, and an
affine function for each cell.

Formally, for each action a ∈ A, the piecewise linear utility
function ua(x) is given as follows. There is a finite set of polytopes
{Paj}j∈Ja with index set Ja where the set of configurations D is
partitioned by the integer points in these polytopes. In other words,

D =
]
j∈Ja

(Paj ∩Zm) ,

where the notation
U

signifies disjoint union. Each polytope Paj =
{x ∈ Rm : Majx ≤ baj} is given by an integer matrix Maj and
integer right-hand side vector baj . Over each cell Paj ∩Zm there
is an affine function faj(x) = αaj · x + βaj with αaj ∈ Zm and
βaj ∈ Z, such that

ua(x) = faj(x) for x ∈ Paj ∩Zm. (2)

Thus, the piecewise linear utility function ua(x) is input as the
binary encoding of Maj , baj , αaj and βaj for each j ∈ Ja.

We observe that a piecewise linear utility function can be repre-
sented as a circuit.2 Also, given an arbitrary utility function, it can
be described exactly by a piecewise linear function, although the
number of pieces required may be Θ(nm) in general, in which case
it is no longer compact in the sense we defined at the beginning of
the paper.

Even if the utility functions cannot be exactly represented as
piecewise-linear functions with a small number of pieces, piecewise-
linear functions can still be useful as approximations of such utility
functions. If for all configurations x and all actions a the difference
between ua(x) and its approximation ûa(x) is at most ε, then by a
standard argument any Nash equilibrium of the approximate game
is a 2ε-Nash equilibrium of the original game.

3. MAIN RESULT
Our paper’s main positive result follows.

THEOREM 4 (INTUITIVE VERSION). Consider a symmetric
game with piecewise linear utilities given by a binary encoding
of the number of players and of the utility functions. Then, when the
number of actions m is fixed, there exists

(i) a polynomial-time algorithm to compute the number of pure
Nash equilibrium configurations;

(ii) a polynomial-time algorithm to find a sample pure strategy
Nash equilibrium, when at least one exists; and

2Addition and multiplication can be carried out by circuits. To
determine which piece a configuration is in, we can go through each
piece and test the inequalities. The size of the resulting circuit is
polynomial in the number of bits needed to describe the piecewise
linear function.

(iii) a polynomial-space, polynomial-delay enumeration algorithm
to enumerate all the pure Nash equilibrium configurations of
the game.

The proof of this theorem draws on the theory of rational generat-
ing functions for encoding lattice points sets in polyhedra. Below
we state the results upon which our proof depends, but offer minimal
motivation.3

3.1 Rational generating functions
Rational generating functions are a method for compactly repre-

senting exponential-cardinality sets of integer points (in our case,
configurations), for refining them (to yield only equilibrium configu-
rations) and for efficiently supporting the computational operations
of counting and enumerating set members.

Consider the generating function of the lattice point set P ∩Zm,
which is defined as

g(P ∩Zm; ξ) =
X

x∈P∩Zm

ξx

=
X

x∈P∩Zm

ξx1
1 · · · ξ

xm
n . (3)

Note that each lattice point x in P is mapped to the exponent of a
monomial ξx in g(P ∩Zm; ξ).

LEMMA 5 (BARVINOK’S THEOREM [3]). Let P be a poly-
tope in Rm and S = P ∩ Zm with generating function g(S, ξ)
given by (3) which encodes the lattice points inside P . Then, there
exists an algorithm which computes an equivalent representation of
the form

g(S; ξ) =
X
i∈I

γi
ξciQm

k=1(1− ξdik)
, (4)

where I is a polynomial-size index set and all data are integer. A
formula of this type is called a short rational generating function.
The algorithm runs in polynomial time when the dimension m is
fixed.

Note that the number of binomial terms in the denominator of
each rational term in (4) is m and thus fixed when the dimension
is fixed. When a lattice point set S is expressed in the form (4) we
refer to g(S; ξ) as its Barvinok encoding.

A Boolean combination of the sets S1, . . . , Sk is any combina-
tion of unions, intersections and set differences of those sets. For
instance, (S1 ∩ S2) \ S3 is a Boolean combination of the sets S1,
S2 and S3.

LEMMA 6 (BOOLEAN OPERATIONS LEMMA [COR. 3.7 IN 4]).
Given fixed integers k and ` there exists a constant s and a polynomial-
time algorithm for the following problem. Given as input, in binary
encoding,

(I1) the dimension m and

(I2) Barvinok encodings of k finite sets Sp ⊆ Zm, g(Sp; ξ) such
that for each rational term the number of binomials in the
denominator is at most `,

output, in binary encoding,

3We provide a more detailed tutorial on rational generating
functions at http://cs.ubc.ca/~kevinlb/papers/gf_
tutorial.pdf for readers unfamiliar with the topic.

(O1) rational numbers γi, integer vectors ci, dij for i ∈ I ,
j = 1, . . . , si, where si ≤ s, such that

g(S; ξ) =
X
i∈I

γi
ξci

(1− ξdi1) . . . (1− ξdisi)

is a rational generating function of the finite set S that is
the Boolean combination of the sets S1, . . . , Sk, and where
each rational term in the expression has at most s terms in
its denominator and where I is a polynomial-sized index
set.

Note that if the input sets Sp ⊆ Zm are integer points inside
polyhedra whose Barvinok encodings g(S; ξ) arise from applying
Lemma 5) then the condition that the number of binomials ` in
the denominators are fixed follows under the assumption that the
dimension m is fixed.

Disjoint unions are a special case of combining sets. To compute
disjoint unions of sets we do not appeal to the Boolean Operations
Lemma, and thus the number of sets k in the union may be polyno-
mial in the input size instead of constant.

LEMMA 7 (DISJOINT UNIONS). If two lattice point sets S
and T are disjoint then the generating function for S ∪ T is the sum
of generating functions for S and T . More generally, for disjoint
lattice point sets S1, . . . , Sk:

g

k]
i=1

Si, ξ

!
=

kX
i=1

g(Si, ξ),

where
U

denotes disjoint union.

Once a rational generating function of a set S has been computed,
various information can be extracted about S, including cardinality
and enumeration.

LEMMA 8 (COUNTING LEMMA [3]). Let the dimension m
be a fixed constant. Given a lattice point set S ∈ Zm input as its
Barvinok encoding g(S, ξ), there exists a polynomial-time algorithm
for computing |S|.

LEMMA 9 (ENUMERATION LEMMA). Let the dimension m
and the maximum number ` of binomials in the denominators be
fixed. Then there exists a polynomial-space, polynomial-delay enu-
meration algorithm for the following enumeration problem. Given
as input, in binary encoding, a boundM and the Barvinok encoding
g(S, ξ) of a lattice point set S ∈ [−M,M]m ∩ Zn, output, in
binary encoding, all points in S in lexicographic order.

3.2 Proof of Main Theorem
We now state our main theorem formally and prove it.

THEOREM 4. Consider a symmetric game with piecewise linear
utilities given by the following input:

(I1) the binary encoding of the number n of players;

(I2) for each a ∈ A, the utility function ua(x) represented as the
binary encoding of Maj , baj , αaj and βaj for each j ∈ Ja.

Then, when the number of actions m is fixed, there exists

(i) a polynomial-time algorithm to compute the number of pure
Nash equilibrium configurations;

(ii) a polynomial-time algorithm to find a sample pure strategy
Nash equilibrium, when at least one exists; and

(iii) a polynomial-space, polynomial-delay enumeration algorithm
to enumerate all the pure Nash equilibrium configurations of
the game.

PROOF. We first show thatN , the set of PSNE, can be encoded as
a short rational generating function. Let N denote the set of PSNE.
A difficulty in applying generating functions to encoding N is the
nonlinearity of the objectives ua. However, since these objectives
are piecewise linear, we simply consider the partitions of D into
regions in which the objectives are linear. We use these partitions
of D (and hence of N) to express N as a Boolean combination of
polytopal lattice point sets, and thus will ultimately be able to apply
Lemma 6. The overall idea is to define subsets of configurations
that have strictly profitable deviations, then remove these subsets
from D, leaving only the set of PSNE.

Define the deviation set Dev(a, a′, j, j′) as the set of config-
urations x in which a player currently playing action a lying in
region Paj has a strictly profitable deviation to playing action a′,
thereby yielding a new configuration x′ ∈ Pa′j′ . Such a profitable
deviation will exist whenever faj(x) < fa′j′(x

′). Since the affine
functions have integer coefficients, we can rewrite this condition
as faj(x) ≤ fa′j′(x

′) − 1 and thereby avoid strict inequalities.
Putting this together, we define the deviation set as

Dev(a, a′, j, j′) =

8<: x ∈ D : xa ≥ 1,x ∈ Paj ,
x′ = x + ea′ − ea ∈ Pa′j′

faj(x) ≤ fa′j′(x
′)− 1}

9=; . (5)

Now we can use (5) to describe N . We obtain

N = D \
[
a,a′

]
j

]
j′

Dev(a, a′, j, j′), (6)

where the first union is over all a, a′ ∈ A, the second union is
over j ∈ Ja, and the third union is over j′ ∈ Ja′ . This identity
(ignoring for now our claim that the second two unions are disjoint)
can be verified as follows. Suppose configuration x ∈ D is not an
element of the right-hand side of (6). This implies that x lies in
some deviation set D(a, a′, j, j′) for some a, a′ ∈ A and (j, j′) ∈
Ja × Ja′ and hence there is a profitable unilateral deviation away
from x, implying that x is not in N . Conversely, suppose x ∈ D
is not in N . This implies that there exists a profitable unilateral
deviation, say from playing action a to a′. This implies ua(x) <
ua′(x + ea′ − ea). Now, x and x + ea′ − ea lie in cells Paj
for some j ∈ Ja and Pa′j′ for some j′ ∈ Ja′ respectively. The
condition on the utilities then implies that faj(x) ≤ fa′j′(x

′)− 1.
It follows that x is in the deviation set Dev(a, a′, j, j′) and thus not
contained in the righthand side of (6).

Now we substantiate our claims that the second two unions are dis-
joint. The union indexed by j is disjoint because the sets {Paj}j∈Ja

form a partition of D, and Dev(a, a′, j, j′) ⊆ Paj . To see that the
union indexed by j′ is disjoint, consider an arbitrary element x of
Dev(a, a′, j, j′). This implies that x′ = x + ea′ − ea ∈ Pa′j′ .
Because {Pa′j′}j′∈Ja′ are disjoint sets, for all j′′ ∈ Ja′ \ {j}
we have x′ 6∈ Pa′j′′ and thus x 6∈ Dev(a, a′, j, j′′). Therefore
Dev(a, a′, j, j′) is disjoint from Dev(a, a′, j, j′′) for any j′, j′′ ∈
Ja′ , j′ 6= j′′.

We took particular care in describing which unions in our expres-
sion forN are disjoint and which are not. This is because the second
and third unions are not of fixed length as would be required for
the application of Lemma 6. However, since the unions are disjoint
we can use simple addition of generating functions to handle this
part of the overall expression of N . To make this precise, note that
each of the Dev(a, a′, j, j′) terms are polytopal lattice point sets
and thus admit Barvinok encodings g(Dev(a, a′, j, j′), ξ) that can
be computed in polynomial time by Lemma 5.

For each a, a′ ∈ A define

Dev(a, a′) =
]
j

]
j′

Dev(a, a′, j, j′). (7)

Dev(a, a′) is a disjoint union, and so by Lemma 7 also admits a
Barvinok encoding

g(Dev(a, a′), ξ) =
X
j

X
j′

g(Dev(a, a′, j, j′), ξ).

We can use (7) to rewrite (6) as N = D \
S
a,a′∈ADev(a, a′).

Since D and each of the sets Dev(a, a′) have Barvinok encodings,
Lemma 6 tells us that we can also derive such an encoding for N .
This Boolean combination of sets describing N is of constant length
since m is fixed.

Now that we have shown that N can be encoded as a short ratio-
nal generating function, our PSNE computation results follow by
applying Lemmas 8 and 9. Given that we can compute g(N, ξ) in
polynomial time, we can compute its cardinality in polynomial time
by applying Lemma 8. This establishes (i). Applying Lemma 9
(noting the boundN ⊆ [0, n]m) we need only wait polynomial time
to output the first element of N , establishing (ii). The enumeration
scheme (iii) derives from Lemma 9 directly.

4. SOCIAL-WELFARE MAXIMIZING EQUI-
LIBRIA

When there are many equilibrium configurations in a symmetric
game, one may ask which equilibrium is “best" according to some
objective function. By applying Lemma 6 and a binary-search
argument, we can optimize in polynomial time any linear objective
over a set of lattice points in Barvinok encoding, and thus over the
set of PSNE. This can be extended to piecewise-linear objectives by
dealing with each piece separately. Such objective functions include
for example the utility ua(x) of playing some action a.

A more interesting and natural objective function is the social
welfare, which is the sum of all players’ utilities. We are thus
interested in finding an optimal solution to the optimization problem:

max

(X
a∈A

xaua(x) : x ∈ N

)
. (8)

Denote by w(x) the objective function of this problem and let w∗

denote its optimal value. Note that w(x) is not piecewise-linear, but
is instead piecewise polynomial. The main result of this section is
an FPTAS for this optimization problem.

The result relies on the following lemma from [14] regarding
optimizing polynomials over sets encoded as rational generating
functions.

LEMMA 10 ([14]). There exists a algorithm for the following
problem. Given as input an

(I1) two vectors xL, xU ∈ Zk,

(I2) a Barvinok encoding of a finite set S ⊆ Zk of lattice points
that is contained in the box {x : xL ≤ x ≤ xU },

(I3) a list of coefficients fi ∈ Q, encoded in binary encoding,
and exponent vectors αi ∈ Z+, encoded in unary4 encoding,
representing a polynomial

f =
X
i

fix
αi

4In this section we only consider polynomial functions of degree 2
and thus the unary encodings of the exponents are of constant size.

that is non-negative on S,

(I4) a positive rational number 1/ε encoded in unary encoding,

output, in binary encoding,

(O1) a point xε ∈ S that satisfies

f(xε) ≥ (1− ε)f∗ where f∗ = max
x∈S

f(x).

This algorithm runs in polynomial time when the dimension n and
the maximum number ` of binomials in the denominator of the
Barvinok encoding of S are fixed.

We now state the main theorem of this subsection.

THEOREM 11. Consider a symmetric game with the same input
as in Theorem 4, and in addition a positive rational number 1

ε
given

in unary encoding. Then, for a fixed number of actions m there
exists a polynomial-time algorithm to output, in binary encoding,
a configuration xε ∈ D that satisfies w(xε) ≥ (1 − ε)w∗ where
w(x) =

P
a∈A xaua(x) and w∗ = maxx∈N w(x).

PROOF. Partition the feasible region N into subregions where
ua(x) is linear simultaneously for all a ∈ A. This is achieved
by considering the problem separately within each cell of the the
common refinement of each partition {Paj}j∈Ja of D. Let J =Q
a∈A Ja. This yields the following fine partition of: D =

S
j∈J Pj

where j = (ja)a∈A ∈ J and Pj =
T
a∈A Paja . Note that this is

also a partition of N . It is then clear that for x ∈ Pj each action’s
utility is ua(x) = faja(x) and thus,

w∗ = max

(X
a∈A

xaua(x) : x ∈ N

)

= max
j∈J

max

(X
a∈A

xafaja(x) : x ∈ N ∩ Pj

)
.

Our approach will be to find an ε-optimal solution x∗j for each inner
optimization problem

max

(X
a∈A

xafaja(x) : x ∈ N ∩ Pj

)
. (9)

There are |J | =
Q
a∈A |Ja| such subproblems and note that |J |

is polynomially bounded in the input size. An overall ε-optimal
solution x∗ is simply the x∗j which maximizes

P
a∈A xaua(x∗j)

amongst all j ∈ J . To find an ε-optimal solution to inner optimiza-
tion problem (9) we apply Lemma 10 with the following input:

1. two vectors xL = (0, 0, . . . , 0) and xU = (n, . . . , n);

2. The data describing the Barvinok encoding of N ∩ Pj given
by the encoding of N from Lemma 4 and the Lemma 6;

3. The polynomial objective
P
a∈A xafaja(x), where the coef-

ficients are all 1 and either or quadratic exponents; and

4. 1
ε

in unary encoding

The result then follows.

Using a similar argument, we can generalize Theorem 10 to con-
struct an FPTAS for maximizing non-negative piecewise-polynomial
functions. Such an FPTAS will be useful in Section 5.

5. PARAMETERIZED SYMMETRIC GAMES
In this section we extend our approach to model families of sym-

metric games parameterized by integer parameters, and answer in-
teresting questions about a family of games without having to solve
each individual game in the family. Many problems in mechanism
design have such a flavor; e.g. designing a game (i.e., setting the pa-
rameters) such that the resulting equilibria satisfy certain properties
or optimize a certain objective.

We allow a fixed number of integer parameters that additively
influence each piece of the utility functions, and furthermore allow
the number of players to be considered as a parameter. The set of
actions remains fixed in each member of the parametric family.

Our overall approach is to use rational generating functions as be-
fore, except that we augment the configuration vector with the vector
of integer parameters. The resulting set we encode as a generating
function is the graph of the parameters–equilibria correspondence.

5.1 Parametric families of symmetric games
Since we are considering parametric families of games in which

the number of players is a changing parameter, we define our piece-
wise linear utilities over configurations of different numbers of
players. That is, we define the utilities over the set of feasible
configurations

F = {x ∈ Zm : 0 ≤
X
a∈A

xa ≤ B, xa ≥ 0, ∀a ∈ A},

where B is a bound on the total number of players. In other words,
the number of players in the game can be between 0 and B.

The utilities are specified by a polyhedral subdivision {Paj}j∈Ja

of F for each action a, and affine functions faj defined over the
cells Paj as in Section 2 except that now the division is over F . We
also introduce a fixed number of parameters that control the additive
constants in the affine functions faj . We constrain these parameters
to be the lattice points inside a polytope of fixed dimensionR ∈ Rd.
Formally, let p be a d-dimensional integer vector inside of Q =
R ∩Zd and for each a ∈ A and j ∈ Ja, define

faj(x,p) = αaj · x + βaj · p, (10)

where now

ua(x,p) = faj(x,p) for p ∈ Q and x ∈ Paj . (11)

We are interested in encoding the set of parameterized PSNE
defined as

N = {(x, n,p) : p ∈ Q,n ∈ {0 . . . B},x ∈ N(n,p)} , (12)

where N(n,p) is the set of PSNE in the symmetric game with n
players, feasible configurations Dn = {x ∈ F :

P
a∈A xa = n}

and utilities defined as in (11) for the given parameter p.
The approach we use to encodeN is similar to that of Section 3 in

that we describeN as a Boolean combination of sets of lattice points
contained in polyhedra that in part derive from a partitioning of N
into cells of the form N ∩Pj using the same notation as in the proof
of Theorem 11. The expression of N as a Boolean combination of
sets is

N = H \
[
a,a′

]
j

]
j′

Dev(a, a′, j, j′), (13)

where H = {(x, n,p) : x ∈ Dn, n ∈ {0, . . . , B}, p ∈ Q} is the
overall feasible set, and the first union is over all a, a′ ∈ A, the
second union is disjoint over j ∈ Ja, the third union is disjoint over

j′ ∈ Ja′ and Dev(a, a′, j, j′) is the set8>><>>:(x, n,p) :

p ∈ Q, 0 ≤ n ≤ B,n ∈ Z
x ∈ Dn ∩ Paj
x′ = x + ea′ − ea ∈ Pa′j′

faj(x) ≤ fa′j′(x
′)− 1}

9>>=>>; . (14)

It is clear that H and each Dev(a, a′, j, j′) is a polytopal lattice
point set in (x, n,p) and thus a Barvinok encoding of N obtains by
applying similar reasoning to that found in Theorem 4.

We have thus established the following.

THEOREM 12. Consider a parametric family of symmetric games
with m actions and n players with utility functions parameterized
by p ∈ Q as found in (11) given by the following input in binary
encoding:

(I1) an integer bound B on the number of players;

(I2) an inequality description of a rational polytope R contained
inRd;

(I3) for each a ∈ A, a nonnegative integer |Ja| and each j ∈
Ja = {1, . . . , |Ja|} an inequality description of the poly-
tope Paj and integer vectors αaj ∈ Zm, and integers βaj
defining the affine functions faj(x) = αaj · x + βaj · p.

Then, the set N of parameterized PSNE defined in (12) has a Barvi-
nok encoding, which can be computed in polynomial time when the
number of actions m and the dimension of the parameter space d is
fixed.

5.2 Optimization over parameters
Once we have a Barvinok encoding of the set N of parameterized

PSNE, we can use it to answer questions about game-theoretic prop-
erties of the parameterized family. For example, if we are interested
in finding a value for the parameter such that a PSNE exists, it is just
a matter of enumerating from the set N . Similarly we can optimize
linear and polynomial objective functions of the parameters, subject
to the constraint that a PSNE exists, by optimizing the objective
function over the set N .

A more interesting case is when we want to find optimal pa-
rameters under some objective function that depends on the PSNE
configuration as well as on the parameters themselves. Since each
game in the family can have multiple PSNEs, the problem is not well
defined until we specify how PSNEs are selected. Depending on the
application domain, we might consider selecting the best-case PSNE
for each game, or selecting the worst-case PSNE. For example in
mechanism design problems, best-case analysis (e.g. recent work
on the price of stability [2]) is useful for getting bounds on what we
could achieve under equilibrium behavior; while worst-case analy-
sis (e.g. recent work on the price of anarchy [22, 29]) is useful for
designing mechanisms with guaranteed performance.

Depending on whether we want to select (e.g.) best-case PSNE
or worst-case PSNE, different types of optimization problems arise.
For example, if we want to minimize the function f(x, n,p), select-
ing the best-case PSNE yields the problem

min{f(x, n,p) : (x, n,p) ∈ N}. (15)

Using similar arguments as in Section 4, we have the following
result:

THEOREM 13. When f is piecewise linear or piecewise poly-
nomial, problem (15) can be solved in polynomial time or approxi-
mated in polynomial time, respectively.

We now turn to a trickier problem than (15), selecting the worst-
case PSNE. This yields the problem

min
n,p

max
x:(x,n,p)∈N

f(x, n,p). (16)

We propose a branch-and-bound approach for solving the min-
max optimization (16). Branch and bound is a general optimization
method for nonconvex optimization problems, applicable to discrete
domains as well as continuous domains [23, 24]. At a high level,
the algorithm partitions the space of candidate solutions into regions
and iteratively refines the partitioning by bisecting a region along
one of its dimensions. The algorithm can prune off regions using
bounds on the objective value for each of the regions.

For our problem, a “region” corresponds to the set of integer
points in a polytope. The branch-and-bound approach requires that
the bounds on the objective value can be efficiently computed for
each region. For each region L, we can compute a lower bound on
the value of any candidate solution n,p from the region by solving

min{f(x, n,p) : (x, n,p) ∈ N, (n,p) ∈ L}.
We can compute an upper bound by picking some n̂, p̂ in L and
solving the optimization maxx:(x,n̂,p̂)∈N f(x, n̂, p̂). Finally, there
is a wide choice on the order in which the regions are explored.
For discrete domains, a simple and memory-efficient approach is to
explore the regions in a depth-first order. The algorithm is outlined
as follows.

1. Set of regions L is initialized with one region {(n,p) : 0 ≤
n ≤ B,p ∈ R} ∩Zd+1.

2. Global upper bound UB is initialized to∞.

3. Repeat until L is empty:

(a) Take the next region L from L in depth-first order.

(b) If L contains only one integer point (n̂, p̂), solve f̂ =

maxx:(x,n̂,p̂)∈N f(x, n,p). Update UB if f̂ > UB.

(c) Otherwise (i.e., L contains more than one integer point),
compute the lower bound LB for L as discussed above.
If LB ≥ UB discard L. Otherwise bisect L along its
longest dimension, and replace L in L by the resulting
two regions.

4. Return UB as the optimal value.

The worse-case running times for branch-and-bound algorithms are
exponential in general. Nevertheless, when the algorithm can prune
off large regions, it can be much faster than the brute-force approach
of trying every parameter instantiation. For branch-and-bound to
be effective, upper- and lower-bounds for each region need to be
computed in polynomial time. As discussed above, this is the case
if f is piecewise linear.

THEOREM 14. For piecewise-linear f , the branch-and-bound
algorithm finds the optimum of (16) in finite time; furthermore, steps
3b and 3c of the algorithm can be computed in polynomial time.

5.3 Fitting a “closest game" to an observed
equilibrium

We now consider a problem from econometrics: determining
parameters of a utility model that would give rise to observed equi-
librium behavior. In particular, we show how to fit an undetermined
parameter p to an observed configuration x̃ in a game with n play-
ers.

Suppose we are analyzing a system modeled as an n-player sym-
metric game where certain aspects of the game’s utility functions

are unknown, and furthermore the set of candidate utility functions
belongs to the set of parametric (in p) piecewise-linear utilities of
the form of (11). We are given the players’ observed behavior in the
game as some configuration x̃. Assuming the players are behaving
rationally, we would like to know the game’s true utility functions,
i.e., to estimate the parameter p. Note that we are not parameteriz-
ing the number of players n, since given any observed configuration
x̃ we automatically determine the number of players n as

P
a∈A x̃a.

Thus, for simplicity we use the notation N(p) instead of N(n,p)
to denote the set of PSNEs with parameter p.

Assuming the players play a PSNE if one exists, we would like
to find a p ∈ Q such that x̃ is a PSNE of the game with parameter
p. Formally, the set of such p is Nx̃ = {p : p ∈ Q, (x̃,p) ∈ N}.
A Barvinok encoding of Nx̃ can be computed efficiently using a
similar construction as in Section 5.1.

However, there might not be such a p, i.e., the set Nx̃ might be
empty. In this case we would like to find p such that x̃ is close
to being an equilibrium. One measure of closeness to being an
equilibrium is ε-equilibrium. Define Ñ to be the set of (x,p, ε)
such that x is an ε-equilibrium of the game with parameter p. We
can straightforwardly compute a Barvinok encoding of Ñ using
a similar construction as in Section 5.1, with ε as an additional
parameter. Then finding the best parameter p amounts to solving
the optimization

min ε

s. t. (x,p, ε) ∈ Ñ , x = x̃.

From our discussion at the outset of Section 4 regarding optimizing
linear functions over sets with Barvinok encodings, we observe
that this can be solved in polynomial time (with a fixed number of
actions) since the objective function is linear.

Instead of using ε-equilibria, we could try to minimize the dis-
tance between x̃ and the set N(p) of PSNE given p, which is
defined as the infimum of distances between x̃ and points in the set
N(p). This yields the optimization problem

min d(x, x̃)

s. t. (x,p) ∈ N,

where d is the distance metric. De Loera et al. [14] analyzed opti-
mization problems of this form. Here we derive some basic results.
If d is the `1 distance, i.e., d(x, x̃) =

P
a |xa − x̃a|, the problem

can be formulated as

min
X
a

da

s. t. (x,p) ∈ N,
xa − x̃a ≤ da, ∀a ∈ A,
x̃a − xa ≤ da, ∀a ∈ A,

which has a linear objective. Since a Barvinok encoding of the
feasible set of the above problem can be computed in polynomial
time using a similar construction as in Section 5.1, the problem
can be solved in polynomial time. A similar argument shows that
the version of the problem with the `∞ distance can be solved in
polynomial time. If d is the `q distance for 1 < q < ∞, the
problem can be formulated as one with a polynomial objective
using similar techniques as above, and thus can be approximated in
polynomial time using Theorem 10. See [14] for a more detailed
discussion which identifies a more general class of computation-
friendly distance metrics.

Another scenario is when the set Nx̃ has multiple points, and we
would like to find the parameter p with the “best fit”. The distance

between x̃ and N(p) is 0 for p ∈ Nx̃, and is thus not useful here.
One approach is to find p such that x̃ is close to all points in N(p).
In other words, we choose the parameter p ∈ Nx̃ that minimizes the
largest distance from x̃ to any equilibrium in x ∈ N(p). Formally,
we need to solve

min
p∈Nx̃

max
x s.t.(x,p)∈N

d(x, x̃). (17)

This is an instance of the min-max optimization problem (16). When
d is the `1 distance or the `∞ distance, d(x, x̃) is piecewise linear
in x, in which case the problem (17) can be solved using the branch-
and-bound algorithm as discussed in Section 5.2. To avoid having
to partition the set Nx̃ (which can have a complex shape), we can
instead let p range from Q, and modify Step 3c of the algorithm so
that whenever we have a region L ⊂ Q such that L ∩Nx̃ = ∅, we
set the lower bound for L to be∞.

5.4 Finding parameters with good equilibrium
payoffs

A common goal in mechanism design is to set the parameters of
the game so as to achieve some desired properties in the resulting
equilibria. Here we consider a mechanism designer choosing the
parameters n and p such that the resulting symmetric game has
equilibria with good payoffs. There are several ways to measure the
“goodness” of an equilibrium. Suppose the objective we are inter-
ested in is the payoff of the worst-off player given an equilibrium
x, i.e., mina:xa>0 ua(x,p). As discussed in Section 5.2, we need
to specify how PSNE are selected for each game. If we pick the
best-case PSNE, this yields the optimization problem

max
(x,n,p)∈N

min
a:xa>0

ua(x,p). (18)

THEOREM 15. The optimization problem (18) can be solved in
polynomial time.

PROOF. The problem can be rewritten as

max w

s. t. (x, n,p, w) ∈ S

where S is the set
(x, n,p, w) :

(x, n,p) ∈ N, umin ≤ w ≤ umax

∀a ∈ A : w ≤ ua(x,p) OR xa = 0

ff
.

umin and umax are the minimum and maximum utilities possible
in the game (they can be computed in polynomial time in fixed
dimension). We use a similar technique as in Section 5.1 to construct
a Barvinok encoding of S in polynomial time. Therefore, problem
(18) can be solved in polynomial time.

If we instead pick the worst-case PSNE, we have the optimization
problem

max
n,p

min
x:(x,n,p)∈N

min
a:xa>0

ua(x,p). (19)

This is an instance of the problem (16), and we can apply the branch-
and-bound algorithm as discussed in Section 5.2.

THEOREM 16. Problem (19) can be solved by the branch-and-
bound algorithm in worst-case exponential time. Furthermore, steps
3b and 3c of the algorithm (the computation of bounds) require
polynomial time.

PROOF. Here step 3c corresponds to the subproblem

max
(x,n,p)∈N :(n,p)∈L

min
a:xa>0

ua(x,p) (20)

for each subregion L of {(n,p) : 0 ≤ n ≤ B,n ∈ Z,p ∈ Q},
and step 3b corresponds to the subproblem

min
x:(x,ñ,p̃)∈N

min
a:xa>0

ua(x, p̃) (21)

for any given ñ and p̃. (20) has a similar form as the best-case
problem (18) and can be solved using the same approach as above
in polynomial time. To solve (21), we break the feasible set into
regions: for each subset T of A, we have one region D(T) =
{x ∈ Dñ : xa > 0 for all a ∈ T, xa = 0 for all a 6∈ T}. There
is a constant number of these regions and we solve the problem
separately on each region. Formally, we rewrite the problem as

min
T⊆A

min
x∈D(T):(x,ñ,p̃)∈N

min
a∈T

ua(x, p̃).

We can now exchange the latter two min operators to get

min
T⊆A

min
a∈T

min
x∈D(T):(x,ñ,p̃)∈N

ua(x, p̃).

The innermost minimization can be solved in polynomial time since
ua(x, p̃) is piecewise-linear. Since the other minimizations are over
sets of fixed size, this can be solved in polynomial time.

6. REFERENCES
[1] C. Àlvarez, J. Gabarró, and M. Serna. Pure Nash equilibria in

games with a large number of actions. In MFCS: Proceedings
of the International Symposium on Mathematical Foundations
of Computer Science, pages 95–106, 2005.

[2] E. Anshelevich, A. Dasgupta, J. Kleinberg, E. Tardos,
T. Wexler, and T. Roughgarden. The price of stability for
network design with fair cost allocation. In FOCS:
Proceedings of the Annual IEEE Symposium on Foundations
of Computer Science, volume 45, pages 295–305. IEEE
COMPUTER SOCIETY PRESS, 2004.

[3] A. Barvinok. A polynomial time algorithm for counting
integral points in polyhedra when the dimension is fixed.
Mathematics of Operations Research, 19(4):769–779, 1994.

[4] A. Barvinok and K. M. Woods. Short rational generating
functions for lattice point problems. Journal of the American
Mathematical Society, 16(957-979), 2003.

[5] N. A. R. Bhat and K. Leyton-Brown. Computing Nash
equilibria of action-graph games. In UAI: Proceedings of the
Conference on Uncertainty in Artificial Intelligence, pages
35–42, 2004.

[6] F. Brandt, F. Fischer, and M. Holzer. Symmetries and the
complexity of pure Nash equilibrium. Journal of Computer
and System Sciences, 75(3):163–177, 2009.

[7] X. Chen and X. Deng. Settling the complexity of two-player
Nash equilibrium. In FOCS: Proceedings of the Annual IEEE
Symposium on Foundations of Computer Science, pages
261–272, 2006.

[8] S. Cheng, D. Reeves, Y. Vorobeychik, and M. Wellman. Notes
on equilibria in symmetric games. In AAMAS-04 Workshop on
Game-Theoretic and Decision-Theoretic Agents, 2004.

[9] C. Daskalakis, A. Fabrikant, and C. Papadimitriou. The game
world is flat: The complexity of Nash equilibria in succinct
games. In ICALP: Proceedings of the International
Colloquium on Automata, Languages and Programming,
pages 513–524, 2006.

[10] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The
complexity of computing a Nash equilibrium. In STOC:
Proceedings of the Annual ACM Symposium on Theory of
Computing, pages 61–70, 2006.

[11] C. Daskalakis and C. Papadimitriou. Computing pure Nash
equilibria via Markov random fields. In ACM-EC:
Proceedings of the ACM Conference on Electronic Commerce,
pages 91–99, 2006.

[12] C. Daskalakis and C. H. Papadimitriou. Three-player games
are hard. In ECCC: Proceedings of the Electronic Colloquium
on Computational Complexity, 2005, TR05-139.

[13] C. Daskalakis, G. Schoenebeck, G. Valiant, and P. Valiant. On
the complexity of Nash equilibria of Action-Graph Games. In
SODA: Proceedings of the ACM-SIAM Symposium on
Discrete Algorithms, 2009.

[14] J. A. De Loera, R. Hemmecke, and M. Köppe. Pareto optima
of multicriteria integer linear programs. INFORMS Journal on
Computing, 21(1):39–48, 2009.

[15] N. R. Devanur and R. Kannan. Market equilibria in
polynomial time for fixed number of goods or agents. In
FOCS: Proceedings of the Annual IEEE Symposium on
Foundations of Computer Science, pages 45–53, 2008.

[16] A. Fabrikant, C. Papadimitriou, and K. Talwar. The
complexity of pure Nash equilibria. In STOC: Proceedings of
the Annual ACM Symposium on Theory of Computing, pages
604–612, 2004.

[17] G. Gottlob, G. Greco, and F. Scarcello. Pure Nash equilibria:
Hard and easy games. Journal of Artificial Intelligence
Research, 24:357–406, 2005.

[18] A. Jiang and K. Leyton-Brown. Computing pure Nash
equilibria in symmetric Action Graph Games. In AAAI:
Proceedings of the AAAI Conference on Artificial Intelligence,
pages 79–85, 2007.

[19] S. Kakade, M. Kearns, J. Langford, and L. Ortiz. Correlated
equilibria in graphical games. In ACM-EC: Proceedings of the
ACM Conference on Electronic Commerce, pages 42–47,
2003.

[20] M. Kearns, M. Littman, and S. Singh. Graphical models for
game theory. In UAI: Proceedings of the Conference on
Uncertainty in Artificial Intelligence, pages 253–260, 2001.

[21] M. Köppe, C. Ryan, and M. Queyranne. Rational Generating
Functions and Integer Programming Games. Arxiv preprint
arXiv:0809.0689, 2008.

[22] E. Koutsoupias and C. Papadimitriou. Worst-case equilibria.
Computer Science Review, 3(2):65–69, 2009.

[23] E. Lawler and D. Wood. Branch-and-bound methods: A
survey. Operations Research, 14(4):699–719, 1966.

[24] R. Moore. Global optimization to prescribed accuracy.
Computers & Mathematics with Applications, 21(6-7):25–39,
1991.

[25] J. Nash. Non-cooperative games. Annals of Mathematics,
54(2):286–295, February 1951.

[26] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani.
Algorithmic Game Theory. Cambridge University Press, 2007.

[27] C. H. Papadimitriou and T. Roughgarden. Computing
correlated equilibria in multi-player games. Journal of the
ACM, 55(3):1–29, 2008.

[28] R. Rosenthal. A class of games possessing pure-strategy Nash
equilibria. International Journal of Game Theory, 2:65–67,
1973.

[29] T. Roughgarden. Selfish routing and the price of anarchy. The
MIT Press, 2005.

[30] G. Schoenebeck and S. Vadhan. The computational
complexity of Nash equilibria in concisely represented games.

In ACM-EC: Proceedings of the ACM Conference on
Electronic Commerce, pages 270–279, 2006.

[31] K. Shoham and K. Leyton-Brown. Multiagent Systems:
Algorithmic, Game-Theoretic and Logical Foundations.
Cambridge University Press, 2009.

APPENDIX
A. PROOF OF THEOREM 3

THEOREM 3. For circuit symmetric games in which the num-
ber of actions is a fixed constant of at least three, the problem of
determining the existence of PSNE is NP-complete.

PROOF. The problem is in NP because to determine whether a
configuration x is a PSNE, there are onlyO(m2) possible deviations
to check.

We show NP hardness by reduction from CIRCUITSAT. Given
a CIRUITSAT problem instance C(y1, . . . , ym), we construct a
circuit symmetric game with n = 2m − 1 players and 3 actions
{1, 2, 3} such that the game has a PSNE if and only if there exists
an satisfying assignment of y1, . . . , ym.

Given a configuration x = (x1, x2, x3), the utility functions
u1(x),u2(x) and u3(x) are defined as follows:

1. If the binary representation of x1 correspond to a satisfying
assignment for C, i.e., C(x0

1, . . . , x
m
1) = 1 where xi1 is the

ith bit of x1, then u1(x) = u2(x) = u3(x) = 2.

2. Otherwise:

(a) if x1 > 0, x2 > 0, x3 > 0, then u1(x) = u2(x) = 1,
u3(x) = −2;

(b) if x1 > 0, x2 > 0, x3 = 0, then u1(x) = −1, u2(x) =
1;

(c) if x1 = 0, x2 > 0, x3 > 0, then u2(x) = −1, u3(x) =
1;

(d) if x1 > 0, x2 = 0, x3 > 0, then u1(x) = 1, u3(x) =
−1;

(e) if xa = n for some action a, i.e., all players are playing
a, then ua(x) = 0.

If there exists a satisfying assignment for C, then any configu-
ration with the corresponding x1 is a PSNE because each player
receives the maximum utility of the game. If there does not exist
a satisfying assignment, then the game’s utilities are defined by
condition 2. We claim that this subgame under condition 2 does not
have a PSNE. Intuitively, the game can be thought of as a general-
ization of the 2-player Rock-Paper-Scissors game. Formally, given
a configuration of case 2a, a deviation from action 3 (with utility -2)
to 1 or 2 is profitable. Given a configuration of case 2b, a profitable
deviation is from action 1 (utility -1) to 2 (utility 1 if the resulting
configuration is of case 2b, utility 0 if the resulting configuration is
of case 2e). Similarly, given a configuration of case 2c, a profitable
deviation is from action 2 to 3; and given a configuration of case 2d,
a profitable deviation is from action 3 to 1. Given a configuration
of case 2e with e.g. x1 = n, a profitable deviation is to action 2,
resulting in a configuration of case 2b. Therefore all configurations
have profitable deviations, thus the subgame does not have a PSNE.

Finally, we observe that the utility functions described above can
be formulated as circuits of the binary representation of x. The
size of the circuit symmetric game is linear in the size of the given
CIRCUITSAT problem instance, and these utility functions can
be constructed in polynomial time. This concludes the reduction
proof.

