
Computing Pure Strategy Nash Equilibria in
Compact Symmetric Games

Christopher Thomas Ryan,
Albert Xin Jiang, Kevin Leyton-Brown

University of British Columbia, Vancouver, Canada

1 / 18

Computing Pure Strategy Nash Equilibria (PSNE)

2 / 18

Computing Pure Strategy Nash Equilibria (PSNE)

◮ Computational questions: How hard is it to decide if a game
has a PSNE? How hard is it to find one? etc.

2 / 18

Computing Pure Strategy Nash Equilibria (PSNE)

◮ Computational questions: How hard is it to decide if a game
has a PSNE? How hard is it to find one? etc.

◮ Answer: depends on the input.
◮ Polynomial time when input is in normal form.

◮ size exponential in the number of players

2 / 18

Computing Pure Strategy Nash Equilibria (PSNE)

◮ Computational questions: How hard is it to decide if a game
has a PSNE? How hard is it to find one? etc.

◮ Answer: depends on the input.
◮ Polynomial time when input is in normal form.

◮ size exponential in the number of players

◮ Potentially difficult (NP-complete, PLS-complete) when input
is “compact”.

◮ Congestion games [Fabrikant, Papadimitriou & Talwar, 2004;
Ieong et al., 2005]

◮ Graphical games [Gottlob, Greco & Scarcello 2005]
◮ Action graph games [Jiang & Leyton-Brown, 2007;

Daskalakis, Schoenebeck, Valiant & Valiant 2009]

2 / 18

Symmetric Games

◮ We focus on
◮ Symmetric games: all players are identical and

indistinguishable.
◮ Fixed number of actions m, varying number of players n.
◮ Utilities are integers.

3 / 18

Symmetric Games

◮ We focus on
◮ Symmetric games: all players are identical and

indistinguishable.
◮ Fixed number of actions m, varying number of players n.
◮ Utilities are integers.

◮ Define configuration:

x = (xa : a ∈ A)

where xa is the number of players playing action a.

3 / 18

Symmetric Games

◮ We focus on
◮ Symmetric games: all players are identical and

indistinguishable.
◮ Fixed number of actions m, varying number of players n.
◮ Utilities are integers.

◮ Define configuration:

x = (xa : a ∈ A)

where xa is the number of players playing action a.

◮ Sufficient to specify utility function ua(x) for each action a
and each configuration x.

◮ There are
(

n+m−1
m−1

)

= Θ(nm−1) distinct configurations.

3 / 18

Symmetric Games

◮ We focus on
◮ Symmetric games: all players are identical and

indistinguishable.
◮ Fixed number of actions m, varying number of players n.
◮ Utilities are integers.

◮ Define configuration:

x = (xa : a ∈ A)

where xa is the number of players playing action a.

◮ Sufficient to specify utility function ua(x) for each action a
and each configuration x.

◮ There are
(

n+m−1
m−1

)

= Θ(nm−1) distinct configurations.
◮ In previous studies [e.g. Brandt, Fischer & Holzer, 2009;

Roughgarden & Papadimitriou, 2005], utility values are given
explicitly.

3 / 18

Symmetric Games

◮ We focus on
◮ Symmetric games: all players are identical and

indistinguishable.
◮ Fixed number of actions m, varying number of players n.
◮ Utilities are integers.

◮ Define configuration:

x = (xa : a ∈ A)

where xa is the number of players playing action a.

◮ Sufficient to specify utility function ua(x) for each action a
and each configuration x.

◮ There are
(

n+m−1
m−1

)

= Θ(nm−1) distinct configurations.
◮ In previous studies [e.g. Brandt, Fischer & Holzer, 2009;

Roughgarden & Papadimitriou, 2005], utility values are given
explicitly.

◮ Compute PSNE in poly time by enumerating configurations

3 / 18

More compact representations of ua

◮ We focus on compact representations of ua: those requiring
only poly(log n) bits.

4 / 18

More compact representations of ua

◮ We focus on compact representations of ua: those requiring
only poly(log n) bits.

◮ Sanity check:
◮ Specifying input: need only m log n bits.

◮ Specifying output: can map utilities to
{

1, 2, . . . ,
(

n+m−1
m−1

)

}

while preserving PSNE, thus need only O(log n) bits.

4 / 18

More compact representations of ua

◮ We focus on compact representations of ua: those requiring
only poly(log n) bits.

◮ Sanity check:
◮ Specifying input: need only m log n bits.

◮ Specifying output: can map utilities to
{

1, 2, . . . ,
(

n+m−1
m−1

)

}

while preserving PSNE, thus need only O(log n) bits.

◮ Computing PSNE: with such a compact representation, is it
even in NP?

4 / 18

More compact representations of ua

◮ We focus on compact representations of ua: those requiring
only poly(log n) bits.

◮ Sanity check:
◮ Specifying input: need only m log n bits.

◮ Specifying output: can map utilities to
{

1, 2, . . . ,
(

n+m−1
m−1

)

}

while preserving PSNE, thus need only O(log n) bits.

◮ Computing PSNE: with such a compact representation, is it
even in NP?

◮ To check if x is in N , the set of of PSNE configurations, only
need to check for each pair of actions a and a′, whether there
is a profitable deviation from playing a to playing a′.

◮ Checking whether x ∈ N is in P (thus computing PSNE in NP)
if the utility functions can be evaluated in poly time.

4 / 18

Circuit Symmetric Games

◮ How hard can it get?
◮ Represent each ua by a Boolean circuit

◮ general method for representing utility functions; complexity
for other circuit-based models studied in e.g. [Schoenebeck &
Vadhan, 2006]

◮ Compact when number of gates is poly(log n)

5 / 18

Circuit Symmetric Games

◮ How hard can it get?
◮ Represent each ua by a Boolean circuit

◮ general method for representing utility functions; complexity
for other circuit-based models studied in e.g. [Schoenebeck &
Vadhan, 2006]

◮ Compact when number of gates is poly(log n)

Theorem (Circuit symmetric games)

◮ When utilities are represented by Boolean circuits, and m ≥ 3,
deciding if a PSNE exists is NP-complete.

◮ When m = 2, there exists at least one PSNE and a sample

PSNE can be found in poly time.

◮ existence of PSNE for the m = 2 case was proved by [Cheng, Reeves,
Vorobeychik & Wellman 2004]; also follows from the fact that such a
game is a potential game.

5 / 18

Piecewise-linear symmetric games

◮ We can do better by considering a natural subclass:
piecewise-linear functions.

6 / 18

Piecewise-linear symmetric games

◮ We can do better by considering a natural subclass:
piecewise-linear functions.

Theorem (Informal version)

When utilities are expressed as piecewise-linear functions, there

exist polynomial time algorithms to decide if a PSNE exists and

find a sample equilibrium.

6 / 18

PWL symmetric game

7 / 18

PWL symmetric game

◮ Domain of utility functions:
configurations

D =

{

x ∈ Z
m :

∑

a∈A

xa = n, x ≥ 0

}

D

x3

x1

x2

n

n

n

7 / 18

PWL symmetric game

◮ Domain of utility functions:
configurations

D =

{

x ∈ Z
m :

∑

a∈A

xa = n, x ≥ 0

}

D

7 / 18

PWL symmetric game

◮ Domain of utility functions:
configurations

D =

{

x ∈ Z
m :

∑

a∈A

xa = n, x ≥ 0

}

◮ Piecewise linear utilities: For
each a ∈ A:

D =
⊎

Pa,j∈Pa

(Pa,j ∩ Z
m)

Paj

7 / 18

PWL symmetric game

◮ Domain of utility functions:
configurations

D =

{

x ∈ Z
m :

∑

a∈A

xa = n, x ≥ 0

}

◮ Piecewise linear utilities: For
each a ∈ A:

D =
⊎

Pa,j∈Pa

(Pa,j ∩ Z
m)

◮ Over each cell Pa,j ∩ Z
m there

is an affine function
fa,j (x) = αa,j · x+ βa,j .

faj(x)

Paj

7 / 18

PWL symmetric game

◮ Domain of utility functions:
configurations

D =

{

x ∈ Z
m :

∑

a∈A

xa = n, x ≥ 0

}

◮ Piecewise linear utilities: For
each a ∈ A:

D =
⊎

Pa,j∈Pa

(Pa,j ∩ Z
m)

◮ Over each cell Pa,j ∩ Z
m there

is an affine function
fa,j (x) = αa,j · x+ βa,j .

◮ Piecing them together:

ua(x) = fa,j (x) for x ∈ Pa,j ∩Z
m

◮ Compact when number of
pieces |Pa| is poly(log n).

ua(x)

7 / 18

Theorem (Formal version)

Consider a symmetric game with PWL utilities

given by the following input:

◮ the binary encoding of the number n of

players;

◮ for each a ∈ A, the utility function ua(x)
represented as the binary encoding of the

inequality description of each Paj and

affine functions faj .

ua(x)

8 / 18

Theorem (Formal version)

Consider a symmetric game with PWL utilities

given by the following input:

◮ the binary encoding of the number n of

players;

◮ for each a ∈ A, the utility function ua(x)
represented as the binary encoding of the

inequality description of each Paj and

affine functions faj .

Then, when the number of actions m is fixed,

and even when the number of pieces are

poly(log n), there exists

1. a polynomial-time algorithm to compute

the number of PSNE

2. a polynomial-time algorithm to find a

sample PSNE

3. a polynomial-space, polynomial-delay

enumeration algorithm to enumerate all

PSNE.

ua(x)

8 / 18

Tool of analysis
◮ Encode the set of PSNE by a rational generating function.

◮ Leverage theory from encoding sets of polytopal lattice points.

◮ previously applied in combinatorics, optimization, compiler
design [e.g. De Loera et al. 2007]

9 / 18

Tool of analysis
◮ Encode the set of PSNE by a rational generating function.

◮ Leverage theory from encoding sets of polytopal lattice points.

◮ previously applied in combinatorics, optimization, compiler
design [e.g. De Loera et al. 2007]

D

x3

x1

x2

n

n

n

9 / 18

Generating function encoding

◮ Given S ⊆ Z
n we represent the points as a generating

function:
g(S ,w) =

∑

a∈S

wa1
1 wa2

2 · · ·wan
n

10 / 18

Generating function encoding

◮ Given S ⊆ Z
n we represent the points as a generating

function:
g(S ,w) =

∑

a∈S

wa1
1 wa2

2 · · ·wan
n

◮ wi are complex variables

◮ Point (2,−3) is encoded as monomial w2
1w

−3
2 .

10 / 18

Generating function encoding

◮ Given S ⊆ Z
n we represent the points as a generating

function:
g(S ,w) =

∑

a∈S

wa1
1 wa2

2 · · ·wan
n

◮ wi are complex variables

◮ Point (2,−3) is encoded as monomial w2
1w

−3
2 .

Example

◮ S = {0, 1, . . . , 1000}

10 / 18

Generating function encoding

◮ Given S ⊆ Z
n we represent the points as a generating

function:
g(S ,w) =

∑

a∈S

wa1
1 wa2

2 · · ·wan
n

◮ wi are complex variables

◮ Point (2,−3) is encoded as monomial w2
1w

−3
2 .

Example

◮ S = {0, 1, . . . , 1000}

◮ g(S ,w) = 1 + w + w2 + · · ·+ w1000

10 / 18

Generating function encoding

◮ Given S ⊆ Z
n we represent the points as a generating

function:
g(S ,w) =

∑

a∈S

wa1
1 wa2

2 · · ·wan
n

◮ wi are complex variables

◮ Point (2,−3) is encoded as monomial w2
1w

−3
2 .

Example

◮ S = {0, 1, . . . , 1000}

◮ g(S ,w) = 1 + w + w2 + · · ·+ w1000

◮ g(S ,w) = 1
1−w

− w1001

1−w

10 / 18

Barvinok’s result (1994)

Theorem

Let P be a rational convex polytope, i.e. P = {x ∈ R
m : Ax ≤ b}.

There is a polynomial time algorithm which computes a short

rational generating function:

g(P ∩ Z
m;w) =

∑

j∈J

γj
w cj

(1− wdj1)(1− wdj2) . . . (1− wdjm)
,

of the lattice points inside P when the dimension m is fixed. The

number of terms in the sum is polynomially bounded and

γj ∈ {−1, 1}.

11 / 18

A Tale of Two Representations

Lattice points: S

12 / 18

A Tale of Two Representations

Inequality

representation:

{x : Ax ≤ b, x ∈ Z
n}

Data: A, b

Lattice points: S

12 / 18

A Tale of Two Representations

Inequality

representation:

{x : Ax ≤ b, x ∈ Z
n}

Data: A, b

Lattice points: S

Gen. Function
Representation:

∑

j∈J

γj

wcj

∏n
k=1(1 − wdjk)

Data: cj , djk

12 / 18

Accessing the points in a generating function encoding

13 / 18

Accessing the points in a generating function encoding

◮ Count the number of integer points in S in polynomial time.
[Barvinok, 1994]

13 / 18

Accessing the points in a generating function encoding

◮ Count the number of integer points in S in polynomial time.
[Barvinok, 1994]

Example

◮ S = {0, 1, . . . , 1000}

13 / 18

Accessing the points in a generating function encoding

◮ Count the number of integer points in S in polynomial time.
[Barvinok, 1994]

Example

◮ S = {0, 1, . . . , 1000}
◮ g(S ,w) = 1 + w + w 2 + · · ·+ w 1000.

Count: substitute w = 1, get g(S , 1) = 1001.

13 / 18

Accessing the points in a generating function encoding

◮ Count the number of integer points in S in polynomial time.
[Barvinok, 1994]

Example

◮ S = {0, 1, . . . , 1000}
◮ g(S ,w) = 1 + w + w 2 + · · ·+ w 1000.

Count: substitute w = 1, get g(S , 1) = 1001.
◮ g(S ,w) = 1

1−w
− w1001

1−w
.

Count: take limit as w → 1, get limw→1 g(S ,w) = 1001.

13 / 18

Accessing the points in a generating function encoding

◮ Count the number of integer points in S in polynomial time.
[Barvinok, 1994]

Example

◮ S = {0, 1, . . . , 1000}
◮ g(S ,w) = 1 + w + w 2 + · · ·+ w 1000.

Count: substitute w = 1, get g(S , 1) = 1001.
◮ g(S ,w) = 1

1−w
− w1001

1−w
.

Count: take limit as w → 1, get limw→1 g(S ,w) = 1001.

◮ Enumerate the elements of S : There exists a polynomial-delay
enumeration algorithm which outputs the elements of S . [De
Loera et al. 2007]

13 / 18

More ways to encode (Barvinok-Woods, 2003)

14 / 18

More ways to encode (Barvinok-Woods, 2003)

Boolean combinations:

��������

������

����

����

����

������

����

����

����

����

����

����

����

����

����

S2

S1

14 / 18

More ways to encode (Barvinok-Woods, 2003)

Boolean combinations:

��

����

������

��

����

����������

������

��

S1 \ S2

14 / 18

More ways to encode (Barvinok-Woods, 2003)

Boolean combinations:

��

����

������

��

����

����������

������

��

S1 \ S2

Disjoint unions:

g(S1 ∪ S2,w) = g(S1,w) + g(S2,w)

S1 S2

14 / 18

Key insight into proof: Express PSNE via polytopes

◮ Want to encode N, the set of
PSNE configurations

x ∈ N ⇐⇒ ∀a ∈ A : (xa = 0) OR (∀a′ ∈ A, ua(x) ≥ ua′ (x+ea′−ea))

◮ D is the set of configurations and
candidate equilibria:

D =

{

x ∈ Z
m :

∑

a∈A

xa = n, x ≥ 0

}
��

��

��

��

��

��

��

�
�
�
�

����

D

x1

x2

15 / 18

Key insight into proof: Express PSNE via polytopes

◮ Want to encode N, the set of
PSNE configurations

x ∈ N ⇐⇒ ∀a ∈ A : (xa = 0) OR (∀a′ ∈ A, ua(x) ≥ ua′ (x+ea′−ea))

◮ D is the set of configurations and
candidate equilibria:

D =

{

x ∈ Z
m :

∑

a∈A

xa = n, x ≥ 0

}

◮ Da,a′ those configurations where it
is profitable for a player playing
action a to deviate.

��

��

��

��

��

��

��

�
�
�
�

����

Da,a′

x1

x2

15 / 18

Key insight into proof: Express PSNE via polytopes

◮ Want to encode N, the set of
PSNE configurations

x ∈ N ⇐⇒ ∀a ∈ A : (xa = 0) OR (∀a′ ∈ A, ua(x) ≥ ua′ (x+ea′−ea))

◮ D is the set of configurations and
candidate equilibria:

D =

{

x ∈ Z
m :

∑

a∈A

xa = n, x ≥ 0

}

◮ Da,a′ those configurations where it
is profitable for a player playing
action a to deviate.

N = D \
⋃

a,a′∈A

Da,a′

��

��

��

����

N

x1

x2

15 / 18

Expressing Da,a′

Da,a′ =
⊎

Pa,j∈Pa

⊎

Pa′,j′∈Pa′

x ∈ D : xa ≥ 1, x ∈ Pa,j ,

x′ = x+ ea′ − ea ∈ Pa′,j′

fa,j(x) ≤ fa′,j′(x
′)− 1

16 / 18

Expressing Da,a′

Da,a′ =
⊎

Pa,j∈Pa

⊎

Pa′,j′∈Pa′

x ∈ D : xa ≥ 1, x ∈ Pa,j ,

x′ = x+ ea′ − ea ∈ Pa′,j′

fa,j(x) ≤ fa′,j′(x
′)− 1

◮ Polynomial number of disjoint unions

◮ Once the pieces Pa,j and Pa′,j ′ fixed, can formulate profitable
deviation as a set of linear constraints

16 / 18

Expressing Da,a′

Da,a′ =
⊎

Pa,j∈Pa

⊎

Pa′,j′∈Pa′

x ∈ D : xa ≥ 1, x ∈ Pa,j ,

x′ = x+ ea′ − ea ∈ Pa′,j′

fa,j(x) ≤ fa′,j′(x
′)− 1

◮ Polynomial number of disjoint unions

◮ Once the pieces Pa,j and Pa′,j ′ fixed, can formulate profitable
deviation as a set of linear constraints

◮ xa ≥ 1: at least one player chose a

16 / 18

Expressing Da,a′

Da,a′ =
⊎

Pa,j∈Pa

⊎

Pa′,j′∈Pa′

x ∈ D : xa ≥ 1, x ∈ Pa,j ,

x′ = x+ ea′ − ea ∈ Pa′,j′

fa,j(x) ≤ fa′,j′(x
′)− 1

◮ Polynomial number of disjoint unions

◮ Once the pieces Pa,j and Pa′,j ′ fixed, can formulate profitable
deviation as a set of linear constraints

◮ xa ≥ 1: at least one player chose a
◮ x′ = x+ ea′ − ea: result of deviating from a to a′

16 / 18

Expressing Da,a′

Da,a′ =
⊎

Pa,j∈Pa

⊎

Pa′,j′∈Pa′

x ∈ D : xa ≥ 1, x ∈ Pa,j ,

x′ = x+ ea′ − ea ∈ Pa′,j′

fa,j(x) ≤ fa′,j′(x
′)− 1

◮ Polynomial number of disjoint unions

◮ Once the pieces Pa,j and Pa′,j ′ fixed, can formulate profitable
deviation as a set of linear constraints

◮ xa ≥ 1: at least one player chose a
◮ x′ = x+ ea′ − ea: result of deviating from a to a′

◮ fa,j(x) ≤ fa′,j′(x
′)− 1: since utilities are integers, equivalent to

fa,j(x) < fa′,j′(x
′)

16 / 18

Expressing Da,a′

Da,a′ =
⊎

Pa,j∈Pa

⊎

Pa′,j′∈Pa′

x ∈ D : xa ≥ 1, x ∈ Pa,j ,

x′ = x+ ea′ − ea ∈ Pa′,j′

fa,j(x) ≤ fa′,j′(x
′)− 1

◮ Polynomial number of disjoint unions

◮ Once the pieces Pa,j and Pa′,j ′ fixed, can formulate profitable
deviation as a set of linear constraints

◮ xa ≥ 1: at least one player chose a
◮ x′ = x+ ea′ − ea: result of deviating from a to a′

◮ fa,j(x) ≤ fa′,j′(x
′)− 1: since utilities are integers, equivalent to

fa,j(x) < fa′,j′(x
′)

◮ Therefore N can be expressed as a short rational generating
function

16 / 18

Expressing Da,a′

Da,a′ =
⊎

Pa,j∈Pa

⊎

Pa′,j′∈Pa′

x ∈ D : xa ≥ 1, x ∈ Pa,j ,

x′ = x+ ea′ − ea ∈ Pa′,j′

fa,j(x) ≤ fa′,j′(x
′)− 1

◮ Polynomial number of disjoint unions

◮ Once the pieces Pa,j and Pa′,j ′ fixed, can formulate profitable
deviation as a set of linear constraints

◮ xa ≥ 1: at least one player chose a
◮ x′ = x+ ea′ − ea: result of deviating from a to a′

◮ fa,j(x) ≤ fa′,j′(x
′)− 1: since utilities are integers, equivalent to

fa,j(x) < fa′,j′(x
′)

◮ Therefore N can be expressed as a short rational generating
function

◮ Can check existence of PSNE via counting operation; find a
sample PSNE via enumeration operation.

16 / 18

Other results

◮ Find a PSNE that approximately optimizes the sum of the
utilities (FPTAS).

◮ Encode the PSNEs of a parameterized family of symmetric
games with utility pieces:

fa,j(x,p) = αa,j · x+ βa,j · p,

where p is a fixed dimensional integer vector of parameters
inside a polytope.

17 / 18

Other results

◮ Find a PSNE that approximately optimizes the sum of the
utilities (FPTAS).

◮ Encode the PSNEs of a parameterized family of symmetric
games with utility pieces:

fa,j(x,p) = αa,j · x+ βa,j · p,

where p is a fixed dimensional integer vector of parameters
inside a polytope.

◮ Answer questions about PSNEs of the family of games without
solving each game

◮ e.g. finding parameter p that optimizes some objective.

17 / 18

Conclusion

◮ computing PSNE for symmetric games with fixed number of
actions, focusing on compact representations of utility:
poly(log n) bits

◮ circuit symmetric games: NP-complete when at least 3 actions

◮ symmetric games with piecewise-linear utility:
polynomial-time algorithms

◮ encode set of PSNE as a rational generating function

Thanks!

18 / 18

