Computing Pure Strategy Nash Equilibria in Compact Symmetric Games

Christopher Thomas Ryan,
Albert Xin Jiang, Kevin Leyton-Brown
University of British Columbia, Vancouver, Canada

Computing Pure Strategy Nash Equilibria (PSNE)

Computing Pure Strategy Nash Equilibria (PSNE)

- Computational questions: How hard is it to decide if a game has a PSNE? How hard is it to find one? etc.

Computing Pure Strategy Nash Equilibria (PSNE)

- Computational questions: How hard is it to decide if a game has a PSNE? How hard is it to find one? etc.
- Answer: depends on the input.
- Polynomial time when input is in normal form.
- size exponential in the number of players

Computing Pure Strategy Nash Equilibria (PSNE)

- Computational questions: How hard is it to decide if a game has a PSNE? How hard is it to find one? etc.
- Answer: depends on the input.
- Polynomial time when input is in normal form.
- size exponential in the number of players
- Potentially difficult (NP-complete, PLS-complete) when input is "compact".
- Congestion games [Fabrikant, Papadimitriou \& Talwar, 2004; leong et al., 2005]
- Graphical games [Gottlob, Greco \& Scarcello 2005]
- Action graph games [Jiang \& Leyton-Brown, 2007; Daskalakis, Schoenebeck, Valiant \& Valiant 2009]

Symmetric Games

- We focus on
- Symmetric games: all players are identical and indistinguishable.
- Fixed number of actions m, varying number of players n.
- Utilities are integers.

Symmetric Games

- We focus on
- Symmetric games: all players are identical and indistinguishable.
- Fixed number of actions m, varying number of players n.
- Utilities are integers.
- Define configuration:

$$
\mathbf{x}=\left(x_{a}: a \in A\right)
$$

where x_{a} is the number of players playing action a.

Symmetric Games

- We focus on
- Symmetric games: all players are identical and indistinguishable.
- Fixed number of actions m, varying number of players n.
- Utilities are integers.
- Define configuration:

$$
\mathbf{x}=\left(x_{a}: a \in A\right)
$$

where x_{a} is the number of players playing action a.

- Sufficient to specify utility function $u_{a}(\mathbf{x})$ for each action a and each configuration \mathbf{x}.
- There are $\binom{n+m-1}{m-1}=\Theta\left(n^{m-1}\right)$ distinct configurations.

Symmetric Games

- We focus on
- Symmetric games: all players are identical and indistinguishable.
- Fixed number of actions m, varying number of players n.
- Utilities are integers.
- Define configuration:

$$
\mathbf{x}=\left(x_{a}: a \in A\right)
$$

where x_{a} is the number of players playing action a.

- Sufficient to specify utility function $u_{a}(\mathbf{x})$ for each action a and each configuration \mathbf{x}.
- There are $\binom{n+m-1}{m-1}=\Theta\left(n^{m-1}\right)$ distinct configurations.
- In previous studies [e.g. Brandt, Fischer \& Holzer, 2009;

Roughgarden \& Papadimitriou, 2005], utility values are given explicitly.

Symmetric Games

- We focus on
- Symmetric games: all players are identical and indistinguishable.
- Fixed number of actions m, varying number of players n.
- Utilities are integers.
- Define configuration:

$$
\mathbf{x}=\left(x_{a}: a \in A\right)
$$

where x_{a} is the number of players playing action a.

- Sufficient to specify utility function $u_{a}(\mathbf{x})$ for each action a and each configuration \mathbf{x}.
- There are $\binom{n+m-1}{m-1}=\Theta\left(n^{m-1}\right)$ distinct configurations.
- In previous studies [e.g. Brandt, Fischer \& Holzer, 2009;

Roughgarden \& Papadimitriou, 2005], utility values are given explicitly.

- Compute PSNE in poly time by enumerating configurations

More compact representations of u_{a}

- We focus on compact representations of u_{a} : those requiring only poly $(\log n)$ bits.

More compact representations of u_{a}

- We focus on compact representations of u_{a} : those requiring only poly $(\log n)$ bits.
- Sanity check:
- Specifying input: need only $m \log n$ bits.
- Specifying output: can map utilities to $\left\{1,2, \ldots,\binom{n+m-1}{m-1}\right\}$ while preserving PSNE, thus need only $O(\log n)$ bits.

More compact representations of u_{a}

- We focus on compact representations of u_{a} : those requiring only poly $(\log n)$ bits.
- Sanity check:
- Specifying input: need only $m \log n$ bits.
- Specifying output: can map utilities to $\left\{1,2, \ldots,\binom{n+m-1}{m-1}\right\}$ while preserving PSNE, thus need only $O(\log n)$ bits.
- Computing PSNE: with such a compact representation, is it even in NP?

More compact representations of u_{a}

- We focus on compact representations of u_{a} : those requiring only poly $(\log n)$ bits.
- Sanity check:
- Specifying input: need only $m \log n$ bits.
- Specifying output: can map utilities to $\left\{1,2, \ldots,\binom{n+m-1}{m-1}\right\}$ while preserving PSNE, thus need only $O(\log n)$ bits.
- Computing PSNE: with such a compact representation, is it even in NP?
- To check if \mathbf{x} is in N, the set of of PSNE configurations, only need to check for each pair of actions a and a^{\prime}, whether there is a profitable deviation from playing a to playing a^{\prime}.
- Checking whether $\mathrm{x} \in N$ is in P (thus computing PSNE in NP) if the utility functions can be evaluated in poly time.

Circuit Symmetric Games

- How hard can it get?
- Represent each u_{a} by a Boolean circuit
- general method for representing utility functions; complexity for other circuit-based models studied in e.g. [Schoenebeck \& Vadhan, 2006]
- Compact when number of gates is poly $(\log n)$

Circuit Symmetric Games

- How hard can it get?
- Represent each u_{a} by a Boolean circuit
- general method for representing utility functions; complexity for other circuit-based models studied in e.g. [Schoenebeck \& Vadhan, 2006]
- Compact when number of gates is poly $(\log n)$

Theorem (Circuit symmetric games)

- When utilities are represented by Boolean circuits, and $m \geq 3$, deciding if a PSNE exists is NP-complete.
- When $m=2$, there exists at least one PSNE and a sample PSNE can be found in poly time.
- existence of PSNE for the $m=2$ case was proved by [Cheng, Reeves, Vorobeychik \& Wellman 2004]; also follows from the fact that such a game is a potential game.

Piecewise-linear symmetric games

- We can do better by considering a natural subclass: piecewise-linear functions.

Piecewise-linear symmetric games

- We can do better by considering a natural subclass: piecewise-linear functions.

Theorem (Informal version)

When utilities are expressed as piecewise-linear functions, there exist polynomial time algorithms to decide if a PSNE exists and find a sample equilibrium.

PWL symmetric game

PWL symmetric game

- Domain of utility functions: configurations

$$
D=\left\{x \in \mathbb{Z}^{m}: \sum_{a \in A} x_{a}=n, x \geq \mathbf{0}\right\}
$$

PWL symmetric game

- Domain of utility functions:
configurations

$$
D=\left\{x \in \mathbb{Z}^{m}: \sum_{a \in A} x_{a}=n, x \geq \mathbf{0}\right\}
$$

PWL symmetric game

- Domain of utility functions:
configurations
$D=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \sum_{a \in A} x_{a}=n, \mathbf{x} \geq \mathbf{0}\right\}$
- Piecewise linear utilities: For each $a \in A$:

$$
D=\biguplus_{P_{\mathrm{a}, j} \in \mathbf{P}_{\mathrm{a}}}\left(P_{\mathrm{a}, j} \cap \mathbb{Z}^{m}\right)
$$

PWL symmetric game

- Domain of utility functions:
configurations
$D=\left\{x \in \mathbb{Z}^{m}: \sum_{a \in A} x_{a}=n, x \geq \mathbf{0}\right\}$
- Piecewise linear utilities: For each $a \in A$:

$$
D=\biguplus_{P_{a, j} \in \mathbf{P}_{a}}\left(P_{a, j} \cap \mathbb{Z}^{m}\right)
$$

- Over each cell $P_{a, j} \cap \mathbb{Z}^{m}$ there is an affine function

$$
f_{a, j}(\mathbf{x})=\boldsymbol{\alpha}_{a, j} \cdot \mathbf{x}+\beta_{a, j}
$$

PWL symmetric game

- Domain of utility functions: configurations

$$
D=\left\{x \in \mathbb{Z}^{m}: \sum_{a \in A} x_{a}=n, x \geq \mathbf{0}\right\}
$$

- Piecewise linear utilities: For each $a \in A$:

$$
D=\biguplus_{P_{a, j} \in \mathbf{P}_{\mathrm{a}}}\left(P_{\mathrm{a}, j} \cap \mathbb{Z}^{m}\right)
$$

- Over each cell $P_{a, j} \cap \mathbb{Z}^{m}$ there
 is an affine function

$$
f_{a, j}(\mathbf{x})=\boldsymbol{\alpha}_{a, j} \cdot \mathbf{x}+\beta_{a, j}
$$

- Piecing them together:

$$
u_{a}(\mathbf{x})=f_{a, j}(\mathbf{x}) \text { for } \mathbf{x} \in P_{a, j} \cap \mathbb{Z}^{m}
$$

- Compact when number of pieces $\left|\mathbf{P}_{a}\right|$ is poly $(\log n)$.

Theorem (Formal version)

Consider a symmetric game with PWL utilities given by the following input:

- the binary encoding of the number n of players;
- for each $a \in A$, the utility function $u_{a}(\mathbf{x})$ represented as the binary encoding of the inequality description of each P_{aj} and affine functions $f_{a j}$.

Theorem (Formal version)

Consider a symmetric game with PWL utilities given by the following input:

- the binary encoding of the number n of players;
- for each $a \in A$, the utility function $u_{a}(\mathbf{x})$ represented as the binary encoding of the inequality description of each $P_{a j}$ and affine functions $f_{a j}$.
Then, when the number of actions m is fixed, and even when the number of pieces are poly $(\log n)$, there exists

1. a polynomial-time algorithm to compute the number of PSNE

2. a polynomial-time algorithm to find a sample PSNE
3. a polynomial-space, polynomial-delay enumeration algorithm to enumerate all PSNE.

Tool of analysis

- Encode the set of PSNE by a rational generating function.
- Leverage theory from encoding sets of polytopal lattice points.
- previously applied in combinatorics, optimization, compiler design [e.g. De Loera et al. 2007]

Tool of analysis

- Encode the set of PSNE by a rational generating function.
- Leverage theory from encoding sets of polytopal lattice points.
- previously applied in combinatorics, optimization, compiler design [e.g. De Loera et al. 2007]

Generating function encoding

- Given $S \subseteq \mathbb{Z}^{n}$ we represent the points as a generating function:

$$
g(S, w)=\sum_{a \in S} w_{1}^{a_{1}} w_{2}^{a_{2}} \cdots w_{n}^{a_{n}}
$$

Generating function encoding

- Given $S \subseteq \mathbb{Z}^{n}$ we represent the points as a generating function:

$$
g(S, w)=\sum_{a \in S} w_{1}^{a_{1}} w_{2}^{a_{2}} \cdots w_{n}^{a_{n}}
$$

- w_{i} are complex variables
- Point $(2,-3)$ is encoded as monomial $w_{1}^{2} w_{2}^{-3}$.

Generating function encoding

- Given $S \subseteq \mathbb{Z}^{n}$ we represent the points as a generating function:

$$
g(S, w)=\sum_{a \in S} w_{1}^{a_{1}} w_{2}^{a_{2}} \cdots w_{n}^{a_{n}}
$$

- w_{i} are complex variables
- Point $(2,-3)$ is encoded as monomial $w_{1}^{2} w_{2}^{-3}$.

Example

- $S=\{0,1, \ldots, 1000\}$

Generating function encoding

- Given $S \subseteq \mathbb{Z}^{n}$ we represent the points as a generating function:

$$
g(S, w)=\sum_{a \in S} w_{1}^{a_{1}} w_{2}^{a_{2}} \cdots w_{n}^{a_{n}}
$$

- w_{i} are complex variables
- Point $(2,-3)$ is encoded as monomial $w_{1}^{2} w_{2}^{-3}$.

Example

- $S=\{0,1, \ldots, 1000\}$
- $g(S, w)=1+w+w^{2}+\cdots+w^{1000}$

Generating function encoding

- Given $S \subseteq \mathbb{Z}^{n}$ we represent the points as a generating function:

$$
g(S, w)=\sum_{a \in S} w_{1}^{a_{1}} w_{2}^{a_{2}} \cdots w_{n}^{a_{n}}
$$

- w_{i} are complex variables
- Point $(2,-3)$ is encoded as monomial $w_{1}^{2} w_{2}^{-3}$.

Example

- $S=\{0,1, \ldots, 1000\}$
- $g(S, w)=1+w+w^{2}+\cdots+w^{1000}$
- $g(S, w)=\frac{1}{1-w}-\frac{w^{1001}}{1-w}$

Barvinok's result (1994)

Theorem

Let P be a rational convex polytope, i.e. $P=\left\{x \in \mathbb{R}^{m}: A x \leq b\right\}$. There is a polynomial time algorithm which computes a short rational generating function:

$$
g\left(P \cap \mathbb{Z}^{m} ; w\right)=\sum_{j \in J} \gamma_{j} \frac{w^{c_{j}}}{\left(1-w^{d_{j 1}}\right)\left(1-w^{d_{j 2}}\right) \ldots\left(1-w^{d_{j m}}\right)}
$$

of the lattice points inside P when the dimension m is fixed. The number of terms in the sum is polynomially bounded and $\gamma_{j} \in\{-1,1\}$.

A Tale of Two Representations

Lattice points: S

A Tale of Two Representations

```
Inequality representation:
```

$\left\{x: A x \leq b, x \in \mathbb{Z}^{n}\right\}$

Data: A, b
Lattice points: S

A Tale of Two Representations

Inequality representation:
$\left\{x: A x \leq b, x \in \mathbb{Z}^{n}\right\}$

Data: A, b

Gen. Function Representation:

$$
\sum_{j \in J} \gamma_{j} \frac{w^{c_{j}}}{\prod_{k=1}^{n}\left(1-w^{d_{j k}}\right)}
$$

Data: $c_{j}, d_{j k}$

Lattice points: S

Accessing the points in a generating function encoding

Accessing the points in a generating function encoding

- Count the number of integer points in S in polynomial time. [Barvinok, 1994]

Accessing the points in a generating function encoding

- Count the number of integer points in S in polynomial time. [Barvinok, 1994]

Example

- $S=\{0,1, \ldots, 1000\}$

Accessing the points in a generating function encoding

- Count the number of integer points in S in polynomial time. [Barvinok, 1994]

Example

- $S=\{0,1, \ldots, 1000\}$
- $g(S, w)=1+w+w^{2}+\cdots+w^{1000}$.

Count: substitute $w=1$, get $g(S, 1)=1001$.

Accessing the points in a generating function encoding

- Count the number of integer points in S in polynomial time. [Barvinok, 1994]

Example

- $S=\{0,1, \ldots, 1000\}$
- $g(S, w)=1+w+w^{2}+\cdots+w^{1000}$.

Count: substitute $w=1$, get $g(S, 1)=1001$.

- $g(S, w)=\frac{1}{1-w}-\frac{w^{1001}}{1-w}$.

Count: take limit as $w \rightarrow 1$, get $\lim _{w \rightarrow 1} g(S, w)=1001$.

Accessing the points in a generating function encoding

- Count the number of integer points in S in polynomial time. [Barvinok, 1994]

Example

- $S=\{0,1, \ldots, 1000\}$
- $g(S, w)=1+w+w^{2}+\cdots+w^{1000}$.

Count: substitute $w=1$, get $g(S, 1)=1001$.

- $g(S, w)=\frac{1}{1-w}-\frac{w^{1001}}{1-w}$.

Count: take limit as $w \rightarrow 1$, get $\lim _{w \rightarrow 1} g(S, w)=1001$.

- Enumerate the elements of S : There exists a polynomial-delay enumeration algorithm which outputs the elements of S. [De Loera et al. 2007]

More ways to encode (Barvinok-Woods, 2003)

More ways to encode (Barvinok-Woods, 2003)

Boolean combinations:

More ways to encode (Barvinok-Woods, 2003)

Boolean combinations:

More ways to encode (Barvinok-Woods, 2003)

Boolean combinations:
Disjoint unions:

$$
g\left(S_{1} \cup S_{2}, w\right)=g\left(S_{1}, w\right)+g\left(S_{2}, w\right)
$$

Key insight into proof: Express PSNE via polytopes

- Want to encode N, the set of PSNE configurations

$$
\mathbf{x} \in N \Longleftrightarrow \forall a \in A:\left(x_{a}=0\right) \quad \text { OR } \quad\left(\forall a^{\prime} \in A, u_{a}(\mathbf{x}) \geq u_{a^{\prime}}\left(\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a}\right)\right)
$$

- D is the set of configurations and candidate equilibria:

$$
D=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \sum_{a \in A} x_{a}=n, \mathbf{x} \geq \mathbf{0}\right\}
$$

Key insight into proof: Express PSNE via polytopes

- Want to encode N, the set of PSNE configurations

$$
\mathbf{x} \in N \Longleftrightarrow \forall a \in A:\left(x_{a}=0\right) \quad \text { OR } \quad\left(\forall a^{\prime} \in A, u_{a}(\mathbf{x}) \geq u_{a^{\prime}}\left(\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a}\right)\right)
$$

- D is the set of configurations and candidate equilibria:

$$
D=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \sum_{a \in A} x_{a}=n, \mathbf{x} \geq \mathbf{0}\right\}
$$

- $D_{a, a^{\prime}}$ those configurations where it is profitable for a player playing action a to deviate.

Key insight into proof: Express PSNE via polytopes

- Want to encode N, the set of PSNE configurations

$$
\mathbf{x} \in N \Longleftrightarrow \forall a \in A:\left(x_{a}=0\right) \quad \text { OR } \quad\left(\forall a^{\prime} \in A, u_{a}(\mathbf{x}) \geq u_{a^{\prime}}\left(\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a}\right)\right)
$$

- D is the set of configurations and candidate equilibria:

$$
D=\left\{\mathbf{x} \in \mathbb{Z}^{m}: \sum_{a \in A} x_{a}=n, \mathbf{x} \geq \mathbf{0}\right\}
$$

- $D_{a, a^{\prime}}$ those configurations where it is profitable for a player playing action a to deviate.

$$
N=D \backslash \bigcup_{a, a^{\prime} \in A} D_{a, a^{\prime}}
$$

Expressing $D_{a, a^{\prime}}$

$$
D_{a, a^{\prime}}=\biguplus_{P_{a, j} \in \mathbf{P}_{a}} \biguplus_{a^{\prime}, j^{\prime} \in \mathbf{P}_{a^{\prime}}}\left\{\begin{array}{l}
\mathbf{x} \in D: x_{a} \geq 1, \mathbf{x} \in P_{a, j}, \\
\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a} \in P_{a^{\prime}, j^{\prime}} \\
f_{a, j}(\mathbf{x}) \leq f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)-1
\end{array}\right\}
$$

Expressing $D_{a, a^{\prime}}$

$$
D_{a, a^{\prime}}=\biguplus_{P_{a, j} \in \mathbf{P}_{a}} \biguplus_{P_{a^{\prime}, j^{\prime}} \in \mathbf{P}_{a^{\prime}}}\left\{\begin{array}{l}
\mathbf{x} \in D: x_{a} \geq 1, \mathbf{x} \in P_{a, j} \\
\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a} \in P_{a^{\prime}, j^{\prime}} \\
f_{a, j}(\mathbf{x}) \leq f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)-1
\end{array}\right\}
$$

- Polynomial number of disjoint unions
- Once the pieces $P_{a, j}$ and $P_{a^{\prime}, j^{\prime}}$ fixed, can formulate profitable deviation as a set of linear constraints

Expressing $D_{a, a^{\prime}}$

$$
D_{a, a^{\prime}}=\biguplus_{P_{a, j} \in \mathbf{P}_{a}} \biguplus_{P_{a^{\prime}, j^{\prime}} \in \mathbf{P}_{a^{\prime}}}\left\{\begin{array}{l}
\mathbf{x} \in D: x_{a} \geq 1, \mathbf{x} \in P_{a, j} \\
\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a} \in P_{a^{\prime}, j^{\prime}} \\
f_{a, j}(\mathbf{x}) \leq f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)-1
\end{array}\right\}
$$

- Polynomial number of disjoint unions
- Once the pieces $P_{a, j}$ and $P_{a^{\prime}, j^{\prime}}$ fixed, can formulate profitable deviation as a set of linear constraints
- $x_{a} \geq 1$: at least one player chose a

Expressing $D_{a, a^{\prime}}$

$$
D_{a, a^{\prime}}=\biguplus_{P_{a, j} \in \mathbf{P}_{a}} \biguplus_{P_{a^{\prime}, j^{\prime}} \in \mathbf{P}_{a^{\prime}}}\left\{\begin{array}{l}
\mathbf{x} \in D: x_{a} \geq 1, \mathbf{x} \in P_{a, j} \\
\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a} \in P_{a^{\prime}, j^{\prime}} \\
f_{a, j}(\mathbf{x}) \leq f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)-1
\end{array}\right\}
$$

- Polynomial number of disjoint unions
- Once the pieces $P_{a, j}$ and $P_{a^{\prime}, j^{\prime}}$ fixed, can formulate profitable deviation as a set of linear constraints
- $x_{a} \geq 1$: at least one player chose a
- $\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a}$: result of deviating from a to a^{\prime}

Expressing $D_{a, a^{\prime}}$

$$
D_{a, a^{\prime}}=\biguplus_{P_{a, j} \in \mathbf{P}_{a}} \biguplus_{P_{a^{\prime}, j^{\prime}} \in \mathbf{P}_{a^{\prime}}}\left\{\begin{array}{l}
\mathbf{x} \in D: x_{a} \geq 1, \mathbf{x} \in P_{a, j} \\
\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a} \in P_{a^{\prime}, j^{\prime}} \\
f_{a, j}(\mathbf{x}) \leq f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)-1
\end{array}\right\}
$$

- Polynomial number of disjoint unions
- Once the pieces $P_{a, j}$ and $P_{a^{\prime}, j^{\prime}}$ fixed, can formulate profitable deviation as a set of linear constraints
- $x_{a} \geq 1$: at least one player chose a
- $\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a}$: result of deviating from a to a^{\prime}
- $f_{a, j}(\mathbf{x}) \leq f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)-1$: since utilities are integers, equivalent to $f_{a, j}(\mathbf{x})<f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)$

Expressing $D_{a, a^{\prime}}$

$$
D_{a, a^{\prime}}=\biguplus_{P_{a, j} \in \mathbf{P}_{a}} \biguplus_{P_{a^{\prime}, j^{\prime}} \in \mathbf{P}_{a^{\prime}}}\left\{\begin{array}{l}
\mathbf{x} \in D: x_{a} \geq 1, \mathbf{x} \in P_{a, j} \\
\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a} \in P_{a^{\prime}, j^{\prime}} \\
f_{a, j}(\mathbf{x}) \leq f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)-1
\end{array}\right\}
$$

- Polynomial number of disjoint unions
- Once the pieces $P_{a, j}$ and $P_{a^{\prime}, j^{\prime}}$ fixed, can formulate profitable deviation as a set of linear constraints
- $x_{a} \geq 1$: at least one player chose a
- $\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a}$: result of deviating from a to a^{\prime}
- $f_{a, j}(\mathbf{x}) \leq f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)-1$: since utilities are integers, equivalent to $f_{a, j}(\mathbf{x})<f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)$
- Therefore N can be expressed as a short rational generating function

Expressing $D_{a, a^{\prime}}$

$$
D_{a, a^{\prime}}=\biguplus_{P_{a, j} \in \mathbf{P}_{a}} \biguplus_{P_{a^{\prime}, j^{\prime}} \in \mathbf{P}_{a^{\prime}}}\left\{\begin{array}{l}
\mathbf{x} \in D: x_{a} \geq 1, \mathbf{x} \in P_{a, j}, \\
\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a} \in P_{a^{\prime}, j^{\prime}} \\
f_{a, j}(\mathbf{x}) \leq f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)-1
\end{array}\right\}
$$

- Polynomial number of disjoint unions
- Once the pieces $P_{a, j}$ and $P_{a^{\prime}, j^{\prime}}$ fixed, can formulate profitable deviation as a set of linear constraints
- $x_{a} \geq 1$: at least one player chose a
- $\mathbf{x}^{\prime}=\mathbf{x}+\mathbf{e}_{a^{\prime}}-\mathbf{e}_{a}$: result of deviating from a to a^{\prime}
- $f_{a, j}(\mathbf{x}) \leq f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)-1$: since utilities are integers, equivalent to $f_{a, j}(\mathbf{x})<f_{a^{\prime}, j^{\prime}}\left(\mathbf{x}^{\prime}\right)$
- Therefore N can be expressed as a short rational generating function
- Can check existence of PSNE via counting operation; find a sample PSNE via enumeration operation.

Other results

- Find a PSNE that approximately optimizes the sum of the utilities (FPTAS).
- Encode the PSNEs of a parameterized family of symmetric games with utility pieces:

$$
f_{a, j}(\mathbf{x}, \mathbf{p})=\boldsymbol{\alpha}_{a, j} \cdot \mathbf{x}+\boldsymbol{\beta}_{a, j} \cdot \mathbf{p},
$$

where \mathbf{p} is a fixed dimensional integer vector of parameters inside a polytope.

Other results

- Find a PSNE that approximately optimizes the sum of the utilities (FPTAS).
- Encode the PSNEs of a parameterized family of symmetric games with utility pieces:

$$
f_{a, j}(\mathbf{x}, \mathbf{p})=\boldsymbol{\alpha}_{a, j} \cdot \mathbf{x}+\boldsymbol{\beta}_{a, j} \cdot \mathbf{p}
$$

where \mathbf{p} is a fixed dimensional integer vector of parameters inside a polytope.

- Answer questions about PSNEs of the family of games without solving each game
- e.g. finding parameter \mathbf{p} that optimizes some objective.

Conclusion

- computing PSNE for symmetric games with fixed number of actions, focusing on compact representations of utility: poly $(\log n)$ bits
- circuit symmetric games: NP-complete when at least 3 actions
- symmetric games with piecewise-linear utility: polynomial-time algorithms
- encode set of PSNE as a rational generating function

Thanks!

