
CSCI 1120 September 22, 2008

Slide 1

Administrivia

• Reminder: Homework 1 due today (by 5pm).

• For information about remote access to lab machines, see my Web page on

remote access here.

• Readings in online tutorial added (since the official textbook may be heavier

going than I intended — skim for now, should be good later as a reference).

Slide 2

Programming Basics (as described in CSCI 1320)

• What computers actually execute is machine language — binary numbers

each representing one primitive operation. Once upon a time, people

programmed by writing machine language (!).

• Nowadays, “programming” as we will use it means writing source code in a

high-level language. Source code is simply plain text, which . . . At this point

we diverge from the explanation for beginners. Exactly what happens to get

from source code to something the computer can execute varies among

languages . . .

http://www.cs.trinity.edu/~bmassing/Misc/remote-access/


CSCI 1120 September 22, 2008

Slide 3

From Source Code to — What?

• Some high-level languages (such as the language understood by typical

UNIX/Linux command shells) are directly interpreted by some other program.

• Others are compiled into object code (machine language) and then linked

with other object code (including system libraries) to form an executable

(something the operating system can execute).

• Java takes a somewhat intermediate approach — it’s initially compiled into

byte code (object code for a made-up processor), which is (in principle)

interpreted by the runtime system (Java Virtual Machine), with system library

code brought in at runtime. (In practice, often a “just-in-time” compiler

translates byte code into native object code on the fly.)

Slide 4

Why Learn C? (For Java Programmers)

• Java provides a programming that’s nice in many ways — lots of safety

checks, nice features, extensive standard library. But it hides a lot about how

hardware actually works.

• C, in contrast, has been called “high-level assembly language” — so it seems

primitive in some ways compared to Java. What you get (we think!) in return

for the annoyances is more understanding of hardware — and if you do

low-level work (e.g., operating systems, embedded systems), it may well be in

C.



CSCI 1120 September 22, 2008

Slide 5

Structure of a C Program

• Pre-processor directives: These begin with # and are used to (among other

things) include in the compilation process information about libraries.

• Global identifiers (functions and variables). Function declarations here are

often useful; variables are usually bad practice.

• Function(s), possibly containing variables, returning values, etc. Every

complete program has exactly one main function.

• Most syntax should look familiar to Java programmers (no accident — Java

was designed that way). Biggest exception may be what’s not there —

classes and exceptions being the most notable.

Slide 6

A Few Words About “Old C” Versus “New C”

• First ANSI standard for C — 1989. Widely adopted, but has some annoying

limitations.

• Later standard — 1999. Many features are widely implemented, but few

compilers support the full standard, and older programs (and some

programmers concerned about maximum portability) don’t use new features.

Much of what we do in this class will focus on older standard for this reason.



CSCI 1120 September 22, 2008

Slide 7

A First C Program

• Let’s write the traditional “hello world” program in C, using vi.

(This tradition of having one’s first program in a language print “hello world”?

It comes from the early and still fairly authoritative book The C Programming

Language, by Kernighan and Ritchie.)

• Once it’s written, compile-and-link by typing gcc hello.c. (There are

other options you should use, but for now this is okay.) Result is a.out.

• Execute by typing a.out.

• Now let’s look at the program line by line . . .

Slide 8

Minute Essay

• None — sign in.


