
CSCI 1120 October 27, 2008

Slide 1

Administrivia

• Next homework coming soon.

Slide 2

Review — Strings and Pointers

• Strings in C are null-terminated arrays of chars.

• Pointers are in some ways a less abstract and less safe version of Java

references. They’re also in some respects interchangeable with arrays.

CSCI 1120 October 27, 2008

Slide 3

Arrays of Text Strings and Command-Line Arguments

• If you can have arrays of int and char and so forth — can you have arrays

of text strings? Sure! They look like two-dimensional arrays of char, or like

arrays of char *.

• Further, this is how C programs get input “from the command line” (e.g., when

you write gcc myprogram.c, gcc somehow gets myprogram.c,

right?):

main can also be defined as

int main(int argc, char * argv[]) { }

where argc is the number of arguments, plus one, and argv is an array of

strings containing the arguments. Example — let’s write a simple “echo”

program.

Slide 4

I/O in C — Basics

• We talked already about single-character I/O (getchar and putchar).

• You already know about a function to write output to “standard output”,

printf. Many options, allowing a lot of control over what’s printed.

• How about input? Counterpart of printf is scanf (skim man page).

Simple to use, though error detection is somewhat crude, and reading text

strings can be hazardous.

• One way to work with files is I/O redirection. Is there something more

general? Yes . . .

CSCI 1120 October 27, 2008

Slide 5

Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

UNIX doesn’t make a distinction, but other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

Slide 6

Streams in C

• In C, streams are represented by the type FILE * — i.e., a pointer to a

FILE, which is something defined in stdio.h.

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr) for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams — next slide.

CSCI 1120 October 27, 2008

Slide 7

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file (for now, text in double quotes).

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

Slide 8

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To

write to an output stream — fprintf, almost identical to printf.

fgetc and fputc may also be useful.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)

CSCI 1120 October 27, 2008

Slide 9

Minute Essay

• None — sign in.

