CSCI 1120

October 27, 2008

Slide 1

Administrivia

o Next homework coming soon.

Slide 2

Review — Strings and Pointers

e Strings in C are null-terminated arrays of char s.

e Pointers are in some ways a less abstract and less safe version of Java
references. They're also in some respects interchangeable with arrays.

CSCI 1120 October 27, 2008

Arrays of Text Strings and Command-Line Arguments

e If you can have arrays of i Nt and char and so forth — can you have arrays
of text strings? Sure! They look like two-dimensional arrays of char , or like
arrays of char *.

e Further, this is how C programs get input “from the command line” (e.g., when
Slide 3 you write CC My pr ogr am ¢, gcc somehow gets mypr ogr am c,
right?):
Mai N can also be defined as

int main(int argc, char * argv[]) {.... }
where ar gc is the number of arguments, plus one, and ar gV is an array of
strings containing the arguments. Example — let’s write a simple “echo”

program.

I/0 in C — Basics

e We talked already about single-character I/0 (get char and put char).

e You already know about a function to write output to “standard output”,
pri nt f. Many options, allowing a lot of control over what's printed.

e How about input? Counterpart of pri nt f is scanf (skim man page).
Slide 4 Simple to use, though error detection is somewhat crude, and reading text

strings can be hazardous.

e One way to work with files is I/O redirection. Is there something more

general? Yes ...

CSCI 1120 October 27, 2008

Streams

e C’s notion of file I/O is based on the notion of a stream — a sequence of
characters/bytes. Streams can be text (characters arranged into lines
separated by something platform-dependent) or binary (any kind of bytes).
UNIX doesn’t make a distinction, but other operating systems do.

Slide 5 e An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

e An output stream is a sequence of characters/bytes produced by your
program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

Streams in C

e In C, streams are represented by the type FI LE * —i.e., a pointer to a
FI LE, which is something defined in st di 0. h.

e A few streams are predefined — St di n for standard input, St dout for
standard output, St der r) for standard error (also output, but distinct from
Slide 6 st dout so you can separate normal output from error messages if you

want to).

e To create other streams — next slide.

CSCI 1120 October 27, 2008

Creating Streams in C

e To create a stream connected with a file —f open.

e Parameters, from its MAN page:
— First parameter is the name of the file (for now, text in double quotes).

— Second parameter is how we want to access the file — read or write,

Slide 7 overwrite or append — plus a b for binary files.

— Return value is a FI LE * — a somewhat mysterious thing, but one we
can pass to other functions. If NULL, the open did not succeed. (Can you
think of reasons this might happen?)

Working With Streams in C

e To read from an input stream — f scanf , almost identical to scanf . To
write to an output stream — f pri nt f , almost identical to pri nt f .
f get ¢ and f put ¢ may also be useful.

e When done with a stream, f ¢l 0Se to tidy up. (Particularly important for

Slide 8 output files, which otherwise may not be completely written out.)

CSCI 1120

October 27, 2008

Slide 9

e None — sign in.

