
CSCI 1120 November 30, 2009

Slide 1

Administrivia

• Reminder: Homework 5 and Homework 6 due next week.

Slide 2

User-Defined Types in C — Review

• Discussed briefly last time — typedef, enum. One more to discuss briefly

today — union.

• Discussed in a bit more detail — struct.



CSCI 1120 November 30, 2009

Slide 3

Example — Singly-Linked List

• As an example, consider code for a singly-linked list of integers, using two

structs, one for list nodes and one for the list itself.

• To make things more interesting, we could write all the functions to use

recursion . . .

Slide 4

User-Defined Types in C — union

• For completeness, we should mention that C also provides a way of defining a

structure that can contain one of several alternatives (“this OR that”, as

opposed to the “this AND that” of struct) — union.

• See the discussion in the book for more about this; it can be useful, but can

also make code more difficult to understand.



CSCI 1120 November 30, 2009

Slide 5

A Little More About gcc

• Many, many compiler options for gcc. One of the most useful is -Wall.

• To automate using them every time, you can use the UNIX utility make . . .

Slide 6

A Little About make

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.



CSCI 1120 November 30, 2009

Slide 7

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example (assuming main.c #includes defs.h and foo.h):

main: main.o foo.o

gcc -o main main.o foo.o

main.o: main.c defs.h foo.h

gcc -c main.c

foo.o: foo.c

gcc -c foo.c

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.

Slide 8

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O

• Or you could use

CFLAGS = -Wall -pedantic $(OPT)

OPT = -O

and then optionally override the -O by saying, e.g., make OPT=-g foo.



CSCI 1120 November 30, 2009

Slide 9

Some Interesting Things You Can Do In C

• Most UNIX/Linux “system calls” (requests to operating system) have a C

library function to call them. Example — fork to create a new process.

Most of them probably have a Java equivalent, but calling them directly from

C may be interesting in being lower-level.

• Some functionality available in command shells is accessible via library

functions — e.g., readline (tab completion, command history).

• The ncurses library provides functions to do fancier I/O (colors, cursor

positioning, etc.).

• C “bindings” for OpenMP provide simple ways to do multithreading for

performance.

Slide 10

Minute Essay

• None — sign in.


