
CSCI 1120 September 13, 2010

Slide 1

Administrivia

• Reminder: Homework 1 due today.

Slide 2

File Permissions in UNIX/Linux

• Access to files specified in terms of three categories of users (owner, group,

and other) and three kinds of access (read, write, and execute).

• To show permissions, ls -l. First character says directory/not, then three

groups of three letters each (rwx), one for each category of user.

• To change permissions, chmod. Can specify via octal (base 8) numbers, but

usually easier to use symbolic mode. Examples:

chmod go= foo to say only owner can access foo.

chmod go+r foo to say everyone can read foo (but not necessarily

write it).



CSCI 1120 September 13, 2010

Slide 3

Programming Basics (as described in CSCI 1320)

• What computers actually execute is machine language — binary numbers

each representing one primitive operation. Once upon a time, people

programmed by writing machine language (!).

• Nowadays, “programming” as we will use it means writing source code in a

high-level language. Source code is simply plain text, which . . . At this point

we diverge from the explanation for beginners. Exactly what happens to get

from source code to something the computer can execute varies among

languages . . .

Slide 4

From Source Code to — What?

• Some high-level languages (such as the language understood by typical

UNIX/Linux command shells) are directly interpreted by some other program.

• Others are compiled into object code (machine language) and then linked

with other object code (including system libraries) to form an executable

(something the operating system can execute).

• Java takes a somewhat intermediate approach — it’s initially compiled into

byte code (object code for a made-up processor), which is (in principle)

interpreted by the runtime system (Java Virtual Machine), with system library

code brought in at runtime. (In practice, often a “just-in-time” compiler

translates byte code into native object code on the fly.)



CSCI 1120 September 13, 2010

Slide 5

Why Learn C? (For Java Programmers)

• Java provides a programming that’s nice in many ways — lots of safety

checks, nice features, extensive standard library. But it hides a lot about how

hardware actually works.

• C, in contrast, has been called “high-level assembly language” — so it seems

primitive in some ways compared to Java. What you get (we think!) in return

for the annoyances is more understanding of hardware — and if you do

low-level work (e.g., operating systems, embedded systems), it may well be in

C.

Slide 6

Structure of a C Program

• Pre-processor directives: These begin with # and are used to (among other

things) include in the compilation process information about libraries.

• Global identifiers (functions and variables). Function declarations here are

often useful; variables are usually bad practice.

• Function(s), possibly containing variables, returning values, etc. Every

complete program has exactly one main function.

• Most syntax should look familiar to Java programmers (no accident — Java

was designed that way). Biggest exception may be what’s not there —

classes and exceptions being the most notable.



CSCI 1120 September 13, 2010

Slide 7

A Few Words About “Old C” Versus “New C”

• First ANSI standard for C — 1989. Widely adopted, but has some annoying

limitations.

• Later standard — 1999. Many features are widely implemented, but few

compilers support the full standard, and older programs (and some

programmers concerned about maximum portability) don’t use new features.

What we do in this class will focus on older standard for this reason.

Slide 8

A First C Program

• Let’s write the traditional “hello world” program in C, using vi.

(This tradition of having one’s first program in a language print “hello world”?

It comes from the early and still fairly authoritative book The C Programming

Language, by Kernighan and Ritchie.)

• Once it’s written, compile-and-link by typing gcc hello.c. (There are

other options you should use, but for now this is okay.) Result is a.out.

• Execute by typing a.out.

• Now let’s look at the program line by line . . .



CSCI 1120 September 13, 2010

Slide 9

Variables in C

• Simple variables (numbers, characters, etc.) are fairly similar to Java primitive

variables. Key differences:

– Sizes of numeric types aren’t as strictly defined — e.g., a Java int is

exactly 32 bits, but a C int may be more. (Why? to allow

implementations to use whatever is most efficient.) But there are unsigned

integer types (which Java does not have).

– No boolean in C89.

– char is an ASCII (not Unicode) character.

• Arrays syntactically similar to Java, but more primitive (more about them

later).

• Pointers similar to Java references, but more flexible / less safe.

Slide 10

Expressions, Statements, and Control Structures

• Most syntax is similar to Java (which is no accident) — within each function,

code is organized into statements, which may contain expressions.

• Control structures are mostly the same as in Java — if , while, do,

switch, for, etc. C doesn’t have the simpler/newer form of for (referred

to as “foreach”).

• Key difference is the lack of classes (and supporting syntax), and use of

pointers rather than references.



CSCI 1120 September 13, 2010

Slide 11

Functions

• Functions also are similar to those in Java, with a couple of key distinctions:

– They have to be declared (or defined) before being referenced.

– Pass-by-value semantics for parameters means you need pointers if you

want to modify/return more than a single value.

• Library functions (e.g., printf) documented in man page. To use them, be

sure to include the appropriate #include.

Slide 12

Minute Essay

• TBA


