
CSCI 1120 October 4, 2010

Slide 1

Administrivia

• Homework 4 to be on Web soon; due next week.

Slide 2

Review — Strings and Pointers

• Strings in C are null-terminated arrays of chars.

• Pointers are in some ways a less abstract and less safe version of Java

references. They’re also in some respects interchangeable with arrays.

CSCI 1120 October 4, 2010

Slide 3

I/O in C — Some Very Basic Functions

• getchar gets one character and returns it as an int. The special value

EOF indicates end of input. (“End of input”? control-D from terminal, more in

next sidebar.)

• putchar writes out one character.

• Use this to write a very simple program that simply copies its input to its

output . . .

Slide 4

I/O in C, Continued

• You already know about a function to write output to “standard output”,

printf. Many options, allowing a lot of control over what’s printed.

• How about input? Counterpart of printf is scanf (skim man page).

Simple to use, though error detection is somewhat crude, and reading text

strings can be hazardous.

• One way to work with files is I/O redirection. Is there something more

general? Yes

CSCI 1120 October 4, 2010

Slide 5

Sidebar: Input/Output Redirection in UNIX/Linux

• In programming classes I talk about “reading from standard input” rather than

“reading from the keyboard”, and “writing to standard output” (or “writing to

standard error”) rather than “writing to the screen”.

(In Java terms — System.in, System.out, and System.err. C

has similar concepts but calls them stdin, stdout, and stderr.)

• What’s the difference?

Slide 6

I/O Redirection, Continued

• stdin (standard input) can come from keyboard, file, or from another

program or shell script.

• stdout and stderr (standard output, error) can go to terminal or file

(overwrite or append), separately or together.

CSCI 1120 October 4, 2010

Slide 7

I/O Redirection, Continued

• For example — to redirect output of ls to ls.out, type

ls >ls.out

(Overwrites ls.out. To append, replace > with >>.)

To also redirect any error messages, append 2>&1.

• To redirect input, use <infile.

Slide 8

Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

UNIX/Linux doesn’t make a distinction, but some other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

CSCI 1120 October 4, 2010

Slide 9

Streams in C

• In C, streams are represented by the type FILE * — i.e., a pointer to a

FILE, which is something defined in stdio.h.

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr) for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams . . .

Slide 10

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file, as a C string.

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files, also a string.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

CSCI 1120 October 4, 2010

Slide 11

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To

write to an output stream — fprintf, almost identical to printf.

fgetc and fputc may also be useful.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)

Slide 12

Reading Text Strings

• Getting text-string input is surprisingly tricky. scanf (or fscanf) seems

like an obvious choice, but:

– it can’t read a string that includes blanks, and

– it has no nice way to limit the number of characters read to the size of the

array being read into.

.

• Getting a whole line is probably better. gets() is an obvious/simple choice

for reading from standard input, but it also has no way to limit how much is

read. fgets() is better. (Look at its man page.)

(Also notice puts() — simple way to write out a text string.)

CSCI 1120 October 4, 2010

Slide 13

Minute Essay

• None — sign in.

