
CSCI 1120 October 18, 2010

Slide 1

Administrivia

• Homework 5 on the Web; due next week.

Slide 2

Arrays of Text Strings and Command-Line Arguments

• If you can have arrays of int and char and so forth — can you have arrays

of text strings? Sure! They look like two-dimensional arrays of char, or like

arrays of char *.

• Further, this is how C programs get input “from the command line” (e.g., when

you write gcc myprogram.c, gcc somehow gets myprogram.c,

right?):

main can also be defined as

int main(int argc, char * argv[]) { }

where argc is the number of arguments, plus one, and argv is an array of

strings containing the arguments. Example — let’s write a simple “echo”

program.

CSCI 1120 October 18, 2010

Slide 3

Dynamic Memory and C

• With the C89 standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays in C99 standard help with that, but don’t solve all

related problems:

In many implementations, space is obtained for them on “the stack”, an area

of memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).

Slide 4

Dynamic Memory and C, Continued

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program can use) and have it stick around until we give it back to

the system.

(The trick here is that most implementations differentiate between two areas

of memory, a “stack” used for local variables, and a “heap” used for dynamic

memory allocation. Usually the former is more limited in size.)

• To request memory, use malloc. To return it to the system, use free.

(For short simple programs you can not bother with free, but for longer and

more complicated programs, you should clean up when you can, or eventually

you may run out of memory.)

• Compare/contrast with Java — allocate space for objects with new, no

explicit deallocation, garbage collection.

CSCI 1120 October 18, 2010

Slide 5

Dynamic Memory and C, Continued

• Examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *
20);

free(nums);

• Some books/resources recommend “casting” value returned by malloc.

Other references recommend the opposite! But you should check the value —

if NULL, system was not able to get that much memory.

Slide 6

Function Pointers

• You know from Java that there are situations in which it’s useful to have

method parameters that are essentially code (e.g., GUI listener methods,

compareTo method for sorting, run method for threads).

• In Java, you often do this by way of a class whose main or only purpose is to

hold the needed code.

• In C, however, you can explicitly pass a pointer to the function.

CSCI 1120 October 18, 2010

Slide 7

Function Pointers in C

• The type of a function pointer includes information about the number and

types of parameters, plus the return type.

• Example — last parameter to library function qsort (in its man page). Call

this by providing, in your code, a function with declaration

int my compare(const char *, const char *);

and using my compare as the last parameter to qsort.

Slide 8

Example — Revised Sort Program

• Change the program to allow specifying at runtime that N inputs are to be

generated.

• Also change to use qsort.

CSCI 1120 October 18, 2010

Slide 9

User-Defined Types

• So far we’ve only talked about representing very simple types — numbers,

characters, text strings, arrays, and pointers. You might ask whether there are

ways to represent more complex objects, such as one can do with classes in

Java.

• The answer is “yes, sort of” — C doesn’t provide nearly as much syntactic

help with object-oriented programming, but you can get something of the

same effect. But first, some simpler user-defined types . . .

Slide 10

User-Defined Types in C — typedef

• typedef just provides a way to give a new name to an existing type, e.g.:

typedef charptr char *;

• This can make your code more readable, or allow you to isolate things that

might be different on different platforms (e.g., whether to use float or

double in some application) in a single place.

CSCI 1120 October 18, 2010

Slide 11

User-Defined Types in C — enum

• In C (and in some other programming languages) an enumeration or an

enumerated type is just a way of specifying a small range of values, e.g.

enum basic_color { red, green, blue, yellow };

enum basic_color color = red;

This can make code more readable, and sometimes combines nicely with

switch constructs.

• Under the hood, C enumerated types are really just integers, though, and they

can be ugly to work with in some ways (e.g., no nice way to do I/O with them).

Slide 12

User-Defined Types in C — struct

• More complex (interesting?) types can be defined with struct, which lets

you define a new type as a collection of other types — something like a Java

class, but with no methods, and public fields only.

• Two versions of syntax (next slide) . . .

CSCI 1120 October 18, 2010

Slide 13

User-Defined Types in C — struct

• One way to define uses typedef:

typedef struct {

int dollars;

int cents;

} money;

money bank_balance;

• Another way doesn’t:

struct money {

int dollars;

int cents;

};

struct money bank_balance;

Slide 14

User-Defined Types in C — struct, Continued

• Either way you define a struct, how you access its fields is the same:

. if what you have is a struct itself:

struct money bank_balance;

bank_balance.dollars = 100;

bank_balance.cents = 100;

-> if what you have is a pointer to a struct:

struct money * bank_balance_ptr = &bank_balance;

bank_balance_ptr->dollars = 100;

bank_balance_ptr->cents = 100;

CSCI 1120 October 18, 2010

Slide 15

Minute Essay

• None — sign in.

