
CSCI 1120 October 25, 2010

Slide 1

Administrivia

• (Next homework?)

Slide 2

User-Defined Types — Review/Recap

• typedef provides a way to give a new name to an existing type.

• enum provides a way to define enumerated types (sort of — really just

integer values).

• More complex types can be defined with struct.



CSCI 1120 October 25, 2010

Slide 3

User-Defined Types in C — struct

• struct lets you define a new type as a collection of other types —

something like a Java class, but with no methods, and public fields only. (Also,

unlike Java, C lets you have both structs and pointers to structs.)

• Two versions of syntax (next slide) . . .

Slide 4

User-Defined Types in C — struct

• One way to define uses typedef:

typedef struct {

int dollars;

int cents;

} money;

money bank_balance;

• Another way doesn’t:

struct money {

int dollars;

int cents;

};

struct money bank_balance;



CSCI 1120 October 25, 2010

Slide 5

User-Defined Types in C — struct, Continued

• Either way you define a struct, how you access its fields is the same:

. if what you have is a struct itself:

struct money bank_balance;

bank_balance.dollars = 100;

bank_balance.cents = 100;

-> if what you have is a pointer to a struct:

struct money * bank_balance_ptr = &bank_balance;

bank_balance_ptr->dollars = 100;

bank_balance_ptr->cents = 100;

Slide 6

User-Defined Types in C — union

• For completeness, we should mention that C also provides a way of defining a

structure that can contain one of several alternatives (“this OR that”, as

opposed to the “this AND that” of struct) — union.

• See the discussion in the book for more about this; it can be useful, but can

also make code more difficult to understand.



CSCI 1120 October 25, 2010

Slide 7

Example — Singly-Linked List

• As an example, consider code for a singly-linked list of integers, using two

structs, one for list nodes and one for the list itself.

• To make things more interesting, we could write all the functions to use

recursion.

• We may end up with a bit more code than comfortably fits into one file,

though, so this may be time to learn more about compiling . . .

Slide 8

A Little More About gcc

• Many, many compiler options for gcc. One of the most useful is -Wall.

• To automate using them every time, you can use the UNIX utility make . . .



CSCI 1120 October 25, 2010

Slide 9

A Little About make

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.

Slide 10

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example (assuming main.c #includes defs.h and foo.h):

main: main.o foo.o

gcc -o main main.o foo.o

main.o: main.c defs.h foo.h

gcc -c main.c

foo.o: foo.c

gcc -c foo.c

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.



CSCI 1120 October 25, 2010

Slide 11

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99

• Or you could use

OPT = -O

CFLAGS = -Wall -pedantic -std=c99 $(OPT)

and then optionally override the -O by saying, e.g., make OPT=-g foo.

Slide 12

Minute Essay

• None — sign in.


