
CSCI 1120 November 22, 2010

Slide 1

Administrivia

• (None.)

Slide 2

Concurrency Basics

• Textbooks on operating systems talk about “processes” — “threads of control”

executing “concurrently”, i.e., at the same time (in fact or in effect).

Each is a sequence of steps, like the (sequential) programs you’ve written.

• How does it work? Conceptually, all processes not waiting for something

(such as I/O) run at the same time. Operating system basically simulates one

CPU per thread, with real CPU(s) switching back and forth among them.

• This turns out to be a good mental model for managing applications, and

activities of the O/S itself. It also means you could get better performance

with more than one CPU/core — can potentially have more than one thing

actually running at the same time.

• But there are some potential pitfalls, involving interaction among

processes/threads.



CSCI 1120 November 22, 2010

Slide 3

Concurrency Basics, Continued

• Two basic models — one in which the concurrently-executing things don’t

share (much) memory and one in which they do.

• Sharing memory has benefits but also some serious potential pitfalls (“race

conditions”).

• Not sharing memory avoids race conditions but means sharing information is

more cumbersome.

Slide 4

Concurrent/Parallel Programming in C

• No support in standard C for either model. Support provided in the form of

libraries and/or compiler extensions.

• For distributed-memory model, there’s MPI (“Message-Passing Interface”);

implementations (in the form of a library) available for many (most?)

platforms.

• For shared-memory model, possibly the most-used library in UNIXworld is

POSIX threads (“pthreads”).

• Support for shared-memory model also provided by OpenMP, a standard for

compiler extensions.

• (Examples as time permits.)



CSCI 1120 November 22, 2010

Slide 5

Minute Essay

• None — sign in.


