
CSCI 1120 March 29, 2010

Slide 1

Administrivia

• Homework 4 to be on Web soon; due next week.

Slide 2

Pointers in C — Review/Continued

• Pointers in C are similar to, but not identical to, references in Java — with the

key differences having to do with safety features and level of abstraction. (No

surprise!)

• In C, pointers are just memory addresses — but they are declared to point to

variables (or data) of a particular type. Example:

int * pointer to int;

double * pointer to double;

CSCI 1120 March 29, 2010

Slide 3

Pointers in C — Operators

• & gets the address of something in memory. So for example you could write

int x;

int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by

writing

*x ptr = 10;

• You can also perform arithmetic on pointers (e.g., ++x ptr) — something

not allowed in Java, and another example of the languages’ different design

goals.

Slide 4

Pass By Reference (Sort Of)

• A significant potential limitation on functions is that a function can only return

a single value. Pointers provide a way to get around this restriction: By

passing a pointer to something, rather than the thing itself, we can in effect

have a function return multiple things.

• To make this work, typically you declare the function’s parameters as pointers,

and pass addresses of variables rather than variables.

• The “sort of” of the title means that this isn’t true pass by reference, as it

exists in some other languages such as C++, but it can be used to more or

less get the same effect. Notice also that Java can’t do this, though again

there are mechanisms that can more or less get the same effect. (What?)

CSCI 1120 March 29, 2010

Slide 5

Pointers Versus Arrays

• In C, pointers and arrays are in some sense(s) equivalent — not identical, but

in many contexts interchangeable.

• This is reflected in the man pages for many functions (e.g., printf). It also

means that when you pass an array to a function, what you’re actually

passing is a pointer — so the array is not copied.

Slide 6

I/O in C — Some Very Basic Functions

• getchar gets one character and returns it as an int. The special value

EOF indicates end of input. (“End of input”? control-D from terminal, more in

next sidebar.)

• putchar writes out one character.

• Use this to write a very simple program that simply copies its input to its

output . . .

CSCI 1120 March 29, 2010

Slide 7

I/O in C, Continued

• You already know about a function to write output to “standard output”,

printf. Many options, allowing a lot of control over what’s printed.

• How about input? Counterpart of printf is scanf (skim man page).

Simple to use, though error detection is somewhat crude, and reading text

strings can be hazardous.

