
CSCI 1120 April 5, 2010

Slide 1

Administrivia

• (Next homework to be on Web soon.)

Slide 2

Arrays of Text Strings and Command-Line Arguments

• If you can have arrays of int and char and so forth — can you have arrays

of text strings? Sure! They look like two-dimensional arrays of char, or like

arrays of char *.

• Further, this is how C programs get input “from the command line” (e.g., when

you write gcc myprogram.c, gcc somehow gets myprogram.c,

right?):

main can also be defined as

int main(int argc, char * argv[]) { }

where argc is the number of arguments, plus one, and argv is an array of

strings containing the arguments. Example — let’s write a simple “echo”

program.

CSCI 1120 April 5, 2010

Slide 3

Sidebar: Input/Output Redirection in UNIX/Linux

• In programming classes I talk about “reading from standard input” rather than

“reading from the keyboard”, and “writing to standard output” (or “writing to

standard error”) rather than “writing to the screen”.

(In Java terms — System.in, System.out, and System.err. C

has similar concepts but calls them stdin, stdout, and stderr.)

• What’s the difference?

Slide 4

I/O Redirection, Continued

• stdin (standard input) can come from keyboard, file, or from another

program or shell script.

• stdout and stderr (standard output, error) can go to terminal or file

(overwrite or append), separately or together.

CSCI 1120 April 5, 2010

Slide 5

I/O Redirection, Continued

• For example — to redirect output of ls to ls.out, type

ls >ls.out

(Overwrites ls.out. To append, replace > with >>.)

To also redirect any error messages, append 2>&1.

• To redirect input, use <infile.

Slide 6

I/O in C — Recap

• getchar and putchar read/write one character at a time.

• scanf and printf read/write other data types (converting from/to

printable form).

• Some environments allow reading/writing files via “I/O redirection”. But that’s

somewhat restrictive . . .

CSCI 1120 April 5, 2010

Slide 7

Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

UNIX/Linux doesn’t make a distinction, but some other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

Slide 8

Streams in C

• In C, streams are represented by the type FILE * — i.e., a pointer to a

FILE, which is something defined in stdio.h.

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr) for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams . . .

CSCI 1120 April 5, 2010

Slide 9

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file, as a C string.

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files, also a string.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

Slide 10

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To

write to an output stream — fprintf, almost identical to printf.

fgetc and fputc may also be useful.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)

• (Examples as time permits.)

CSCI 1120 April 5, 2010

Slide 11

Reading Text Strings

• Getting text-string input is surprisingly tricky. scanf (or fscanf) seems

like an obvious choice, but:

– it can’t read a string that includes blanks, and

– it has no nice way to limit the number of characters read to the size of the

array being read into.

.

• Getting a whole line is probably better. gets() is an obvious/simple choice

for reading from standard input, but it also has no way to limit how much is

read. fgets() is better. (Look at its man page.)

(Also notice puts() — simple way to write out a text string.)

