
CSCI 1120 August 29, 2011

Slide 1

Administrivia

• One purpose of the syllabus is to spell out policies (next slides).

• Most other information will be on the Web, either on my home page (here,

office hours) or the course Web page (here).

A request: If you spot something wrong with course material on the Web,

please let me know!

Slide 2

Course FAQ

• “What will my grade be based on?” (See syllabus.)

• “What happens if I can’t turn in work on time, or I miss a class?” (See

syllabus.)

• “What’s your policy on collaboration?” (See syllabus.)

http://www.cs.trinity.edu/~bmassing
http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2011fall/HTML/


CSCI 1120 August 29, 2011

Slide 3

Course FAQ, Continued

• “When is the next homework due?” (See “Lecture topics and assignments”

page.)

• “When are your office hours?” (See my home page.)

Note that part of my job is to answer your questions outside class, so if you

need help, please ask! in person or by e-mail or phone.

Slide 4

Course FAQ, Continued

• “What computer(s) can I use to do homework?”

Easiest option may be department’s Linux lab machines. There are others.

You should have physical access (via your TigerCard) to five rooms

containing such machines any time the building is open. You should have

remote access to any that are booted into Linux.

Returning students should already have accounts set up. (If you’ve forgotten

your password, go to the ITS help desk and ask for it to be reset.) To change

your password, open a terminal window and type passwd.



CSCI 1120 August 29, 2011

Slide 5

What Is This Course About?

• Back story: Primary goal of our traditional first course (CSCI 1320) is to

introduce students to programming and algorithmic problem-solving. Another

goal of the course as taught up to this year, however, was to expose students

to certain low-level concepts that contribute to a well-rounded education in

computer science. Students coming into the major via other routes often did

not get this exposure and struggled in later courses.

• CSCI 1120 was added to the curriculum as a way to address this problem —

i.e. to cover the parts of CSCI 1320 that might not be covered by alternative

introductory courses. With the recent shift in language(s) used in CSCI 1320,

it will be required for all students.

Slide 6

Course Topics

• Basic C programming, for people who already know how to write programs in

some other language.

• (Review of) the Linux/UNIX command-line environment and command-line

development tools.

• (Review of) basics of computer arithmetic.

• More advanced topics as time permits.



CSCI 1120 August 29, 2011

Slide 7

Programming Basics (as described in CSCI 1320)

• What computers actually execute is machine language — binary numbers

each representing one primitive operation. Once upon a time, people

programmed by writing machine language (!).

• Nowadays, “programming” as we will use it means writing source code in a

high-level language. Source code is simply plain text, which . . . At this point

we diverge from the explanation for beginners. Exactly what happens to get

from source code to something the computer can execute varies among

languages . . .

Slide 8

From Source Code to — What?

• Some high-level languages (such as the language understood by typical

UNIX/Linux command shells) are directly interpreted by some other program.

• Others are compiled into object code (machine language) and then linked

with other object code (including system libraries) to form an executable

(something the operating system can execute).

• Still others (including Scala and Python, sometimes) take an intermediate

approach — initially compiled into byte code (object code for a made-up

processor), which is (in principle) interpreted by a runtime system, with

system library code brought in at runtime. (In practice, a “just-in-time”

compiler may translate byte code into native object code on the fly.)



CSCI 1120 August 29, 2011

Slide 9

Why Learn C? (For Java/Python/Scala Programmers)

• Scala and Python (and Java, less so) provide a programming environment

that’s nice in many ways — lots of safety checks, nice features, extensive

standard library. But they hide a lot about how hardware actually works.

• C, in contrast, has been called “high-level assembly language” — so it seems

primitive in some ways compared to many other languages. What you get (we

think!) in return for the annoyances is more understanding of hardware — and

if you do low-level work (e.g., operating systems, embedded systems), it may

well be in C.

Slide 10

Structure of a C Program

• Pre-processor directives: These begin with # and are used to (among other

things) include in the compilation process information about libraries.

• Global identifiers (functions and variables). Function declarations here are

often useful; variables are usually bad practice.

• Function(s), possibly containing variables, returning values, etc. Every

complete program has exactly one main function.

• Syntax should look familiar to Java programmers (no accident — Java was

designed that way). Less familiar to Python and Scala programmers.



CSCI 1120 August 29, 2011

Slide 11

A First C Program

• Let’s write the traditional “hello world” program in C, using vi.

(This tradition of having one’s first program in a language print “hello world”?

It comes from the early and still fairly authoritative book The C Programming

Language, by Kernighan and Ritchie.)

• Once it’s written, compile-and-link by typing gcc hello.c. (There are

other options you should use, but for now this is okay.) Result is a.out.

• Execute by typing a.out.

• (We will look at details next time.)

Slide 12

Minute Essay

• Tell me about your background:

– What programming classes have you taken (high school or other), and

what language(s) did you use?

– How comfortable are you with the Linux/Unix command-line interface?

• What are your goals for this course? Anything else you want to tell me?

• (Reminder: Reading assignment for next time.)


