
CSCI 1120 September 12, 2011

Slide 1

Administrivia

• (Reading assignment for today updated/expanded. Read for next time!)

Slide 2

Getting Started with Linux (Review)

• (A UNIX person’s response to claims that UNIX isn’t user friendly: “Sure it is.

It’s just choosy about its friends.”)

• When you log in, you should get a graphical desktop, which should be

navigable with what you know from using other graphical environments

(though some details are different).

• The graphical system should give you a way to get a terminal window, which

is what we will use a lot in this class (in keeping with the title!). In theory you

know the basics from CSCI 1320. If not, review the relevant chapter of the

book Dr. Lewis is writing for POP I/II.



CSCI 1120 September 12, 2011

Slide 3

Useful Command-Line Tips

• The shell (the application that’s processing what you type) keeps a history of

commands you’ve recently typed. Up and down arrows let you cycle through

this history and reuse commands.

(Pedantic aside: “The shell” here means the one you’re most likely to be

using. There are other programs with similar functionality you could use

instead.)

• The shell offers “tab completion” for filenames — if you type part of a filename

and press the tab key, it will try to complete it.

• To learn more about command foo, type man foo. (This also works with

C library routines — more about them later.) This is reference information

rather than a tutorial, but usually very complete.

Slide 4

Text Editors

• Many, many text editors, and people have favorites. I use and will teach in this

class vi: It’s found on every UNIX/Linux system I know of, and is very

powerful, though it takes some getting used to. (vi on our Linux machines is

actually vim, a more capable “clone” of the original vi.) Other popular Linux

text editors include emacs, pico, and various graphical editors that come

with “desktop environments” such as GNOME and KDE.

• Tip: If you’re struggling with whatever editor you previously used, either spend

a little time learning its features, or choose another one! vim has

vimtutor. emacs also has built-in tutorial.



CSCI 1120 September 12, 2011

Slide 5

C Versus Python/Scala — Recap

• Language-level differences: C is pretty low-level compared to both Python and

Scala. Programmer must do more things explicitly, and language/environment

has fewer safety rails. Probably not a great choice for writing applications, but

good for low-level work (such as o/s-level programs) and educational.

• Development environment differences: No REPL; code must be compiled into

“executable”, which then runs like other executables. Compiler error

messages not always novice-friendly.

Slide 6

Structure of a C Program

• Pre-processor directives: These begin with # and are used to (among other

things) include in the compilation process information about libraries.

• Global identifiers (functions and variables). Function declarations here are

often useful; variables are usually bad practice.

• Function(s), possibly containing variables, returning values, etc. Every

complete program has exactly one main function.

• Syntax should look familiar to Java programmers (no accident — Java was

designed that way). Less familiar to Python and Scala programmers.



CSCI 1120 September 12, 2011

Slide 7

A Few Words About “Old C” Versus “New C”

• First ANSI standard for C — 1989. Widely adopted, but has some annoying

limitations.

• Later standard — 1999. Many features are widely implemented, but few

compilers support the full standard, and older programs (and some

programmers concerned about maximum portability) don’t use new features.

Slide 8

A First C Program, Revisited

• Last time we wrote the traditional “hello world” program in C, compiled/linked

it (with gcc) and executed it.

• Now let’s look at the program line by line. But first . . .



CSCI 1120 September 12, 2011

Slide 9

A Few Words About Types

• To the hardware, “it’s all ones and zeros”; types say how we want to interpret

them (integers? characters?), define what kinds of things we can do with

particular chunks of data.

• Should be reasonably familiar to Scala programmers but may be new to

Python programmers. Both languages are more willing to guess your intent

than C is. Book lists C’s built-in types. Some will work in gcc only with the

-std=c99 option.

Slide 10

Functions

• C programs are organized in terms of functions — a somewhat more primitive

version of methods as found in object-oriented programming languages such

as Python and Scala. As in other programming languages, C functions are a

little like mathematical functions, except that evaluating them can have “side

effects”.

(For example, evaluating the library function printf has the side effect of

writing some text to standard output (by default, displaying it in the terminal

window).)

• Unlike in some other languages, C functions have to be declared (or defined)

before being referenced. Declaration includes name, return type, and formal

parameters. For library functions, declaration is usually supplied via a

#include preprocessor directive.



CSCI 1120 September 12, 2011

Slide 11

Functions, Continued

• A complete C program must contain a function called main. It can be

declared to take zero parameters, or two. Which to use? Depends on whether

it needs access to command-line arguments. It should return an integer.

• When you execute a compiled/linked program, the operating system calls

main, optionally passing it any command-line arguments. The program ends

when this function does; its return value can be used to indicate whether the

program succeeded (e.g., in shell scripts).

• (Now look again at our “hello world” program. More of it should make sense.)

Slide 12

Sidebar — Compiler Options

• Earlier I showed the simplest way to use gcc to compile a program. But

there are many variations — options. Specify on the command line, ahead of

name of input file.

• Some of the most useful:

– -Wall and -pedantic warn you about dangerous and non-standard

things. -Wall highly recommended.

– -std=c99 allows you to use full C99.

– -o allows you to name the output file (default a.out).

• Automate with make (more later).



CSCI 1120 September 12, 2011

Slide 13

Variables in C

• To do anything interesting in a program, we need some place to store input

and intermediate values — “variables”.

• In C, variables must be declared, with a name and a type. In C89, all

declarations must come before any code.

• Variable names follow rules for identifiers — letters, numbers, and

underscores only, must start with letter or underscore, preferably letter.

Case-sensitive.

Slide 14

Types in C

• Integer types include int, short, long. (All can be declared

unsigned too.) Unlike in some language (such as Java), sizes not strictly

defined — e.g., a Java int is exactly 32 bits, but a C int may be more.

(Why? to allow implementations to use whatever is most efficient.)

• Floating-point types include float, double. Binary equivalent of

scientific notation (with exponent and mantissa). Minimum size for double

is larger than for float so allows more significant figures, larger range.

• More about other types later.



CSCI 1120 September 12, 2011

Slide 15

Expressions in C

• C (like many other programming languages) has a notion of an expression.

Simple examples (assuming we’ve declared variables x and y):

– 5

– x

– y + 5

– (x + y) / 2

• Every expression has a value, and computing this value is called evaluating

the expression. Evaluate the above expressions, assuming x has value 10

and y has value 20 . . .

Slide 16

Expressions in C, Continued

• Sometimes evaluating an expression also produces changes to variables in

the expression or other variables; these are called side effects. Examples:

– x = 10

– printf("hello, world\n)

(Yes, really! Usually we don’t care about much about the values of these

expressions, just their side effects.)

• Many, many operators of different kinds. For now we’ll look only at the ones

for arithmetic.



CSCI 1120 September 12, 2011

Slide 17

Arithmetic Expressions — Operators

• Usual arithmetic operators +, -, * (multiplication), / (division). (+ and - can

be unary too.)

Notice that division, applied to integers, discards any remainder. This is so

the result will be an integer too, and can even be useful. What if you want a

fraction? Later.

• Also % operator for getting remainder; e.g., x % 2 is 0 if x is even, 1 if it’s

odd.

• Other useful arithmetic operators include pre/post increment/decrement, bit

shifts.

• Expressions can be quite complex. How they’re evaluated depends on rules

of precedence and associativity. My advice — when in doubt, use

parentheses! Example: (x + y) / 2 versus x + y / 2.

Slide 18

Statements in C

• C programs are made up of statements (usually collected inside functions.

• Statements come in several types:

– Null (;).

– Expression (expression ;).

– Return (return expression ;).

– Compound (more later).



CSCI 1120 September 12, 2011

Slide 19

Output

• The “hello world” used printf to print some text. printf can do a lot

more.

• For example, we can use it to print integers, e.g.,

printf("the value of x is %d\n", x);

Slide 20

Sidebar — Man Pages, Revisited

• As mentioned earlier, most commands — and many library functions — have

“man pages” (short for “manual”). These are meant as online references

rather than tutorials, so not always easy reading, but usually very complete.

• man program shows its output to you using a program intended for paging

through text. On our systems, default is less. Keystroke commands include

space to go forward, b to go back, q to quit. h for help — or, of course, you

could read all about it (how?).

• Sometimes there are multiple commands/functions with the same name.

printf is one. man printf tells you about the (command-line)

command, not the C library function. To get all possibilities, man -a

printf. To get the one for the library function, man 3 printf.



CSCI 1120 September 12, 2011

Slide 21

Minute Essay

• Was anything today particularly unclear? Any other questions?


