
CSCI 1120 September 19, 2011

Slide 1

Administrivia

• Homework 1 on the Web. Due a week from today. Two problems,

algorithmically straightforward, so the main challenges will be syntax and

tools.

• (Notice change in reading assignments.)

Slide 2

Minute Essay From Last Lecture

• How does C handle operators? some sort of stack?

Up to the compiler, but evaluating expressions with operators might involve a

stack.

• Why do you need that backslash-n in the call to printf?

It “prints” an end-of-line character.

• Could main return something other than an int?

Not in a program conforming to the C standard(s), at least in a so-called

“hosted” environment (roughly, one in which the program runs under an O/S).

Compilers are allowed to define other forms of main, and void

main(void) is common in some environments (e.g., Windows). Almost a

religious-war topic in some circles!

CSCI 1120 September 19, 2011

Slide 3

Preprocessor Directives — A Bit More

• Examples so far have started with #include directive to tell compiler

where to find information about I/O library functions. This is input to the

“preprocessor”.

• Another useful directive is #define, to give meaningful names to

constants, e.g.,

#define IMPRECISE_PI 3.14159

Slide 4

A Few Words About Syntax

• Python programmers should note that in C, unlike in Python, indentation is not

generally syntactically significant. (But adopting a consistent style makes your

code more readable to humans.)

• Scala programmers should note that in C, unlike in Scala, the compiler will not

add semicolons to the ends of statements or guess about types.

CSCI 1120 September 19, 2011

Slide 5

Variables — Review/Recap

• In order to do anything useful we usually (though not always!) need some

variables. In C, variables must be declared before being used. (Contrast with

Python.) Declaration specifies name and type. (Contrast with Scala.)

• Once you have variables, you can assign values to them, using expressions

that range from simple constants to complex math-like formulas involving

constants and/or other variables.

Slide 6

Expressions — Recap/Review

• C provides support for the usual(?) arithmetic operators. Notice that

operations on integer types produce integers.

• C also includes some operators (e.g., ++, +=) that produce side effects.

CSCI 1120 September 19, 2011

Slide 7

Expressions — “Caveat Programmer”

• C standard is somewhat imprecise about details of expression evaluation —

e.g., in evaluating

f() + g()

two functions could be called in either order. (Why? To allow greater flexibility

for implementers, possible allow for more-efficient programs.)

• C syntax allows programmers to write statements/expressions in which a

variable’s value is changed more than once, e.g.,

i = (i++) + (i--);

Syntactically legal, but standard says that such expressions invoke “undefined

behavior”. Best to avoid that!

Slide 8

Simple Output, Revisited

• Simple/typical way to produce output (to “standard output” — terminal for

now) is with library function printf.

• Parameters are “format string”, which may include “conversion specifications”,

followed by zero or more expressions, one for each conversion specification.

CSCI 1120 September 19, 2011

Slide 9

Simple Input

• Simple way to get integer/float input (from “standard input” — keyboard for

now) is with library function scanf. For now we will look only at simple

forms:

scanf("%d", &variable_name);

scanf("%d %d", &var1, &var2);

etc. Parameters similar to printf, except for that ampersand. (It generates

a pointer. More about that later!)

• Considered as an expression, call to scanf has a value, namely the number

of variables successfully read. (So you can check it to make sure valid input

was entered.)

Slide 10

Conditional Execution

• Also as in other procedural languages, C has syntax for saying that some

code should be executed only if some condition holds.

• Syntax is

if (boolean-expression)

statement1

else

statement2

where statement1 and statement2 can be single statements or blocks

enclosed in curly braces (and should probably be indented, for the

convenience of human readers).

• You can build up chains of conditions by making the statement after else

another if, and you can omit the else and following statement. (The ideas

here should be very familiar; only the syntax should be new.)

CSCI 1120 September 19, 2011

Slide 11

Conditional Expressions

• Scala and Python both provide a way to include if/else idea within an

expression.

• C does too, but it’s not as obvious — “ternary operator”, e.g.,

int sign = (x >= 0) ? 1 : -1

Slide 12

Example — Finding Roots of a Quadratic Equation

• As an example of all of this, let’s write a program that finds and prints the

root(s) of a quadratic equation of the form

ax
2 + bx + c = 0

using the familiar(?) formula

x =
−b ±

√
b2 − 4ac

2a

• (We’ll also include in this program an example of getting input from standard

input.)

CSCI 1120 September 19, 2011

Slide 13

Minute Essay

• None — sign in.

