
CSCI 1120 October 10, 2011

Slide 1

Administrivia

• Reminder: Homework 2 was due last week, so if you haven’t turned anything

in (I think only one person is in this category), please do.

• Next homework will be on the Web later today or early tomorrow. To be due

next week.

Slide 2

Loops in C — Recap

• C has several constructs for repeating execution of a statement or block of

statements — while, do while, and for loops. The first two will likely

be familiar to Python and Scala programmers; the third, not so much.

• What C does not have, and Python and Scala do, is nice constructs for

iterating through collections — in keeping with its being lower-level, maybe.



CSCI 1120 October 10, 2011

Slide 3

Arrays in C — Recap

• Again in contrast to higher-level languages such as Python and Scala, C has

only one construct for representing collections of similar data, namely the

array.

• In some ways C’s arrays are fairly similar to arrays in Python and Scala —

basic idea of a collection of elements of the same type, fixed size, indexed

starting at 0.

• A key difference is that with C’s arrays the underlying implementation shows

through more clearly — what you get is a sequence in memory of storage

cells, all of the same size, with little in the way of safety checks that would

keep you within the allowed bounds.

Slide 4

Functions in C

• Functions in C are conceptually much like functions in other procedural

programming languages. (Functions in object-oriented languages are similar

but have some extra capabilities.)

I.e., a function has a name, parameters, a return type, and a body (some

code).

• One difference between C and higher-level languages: You aren’t supposed

to use a function before you tell the compiler about it, either by giving its full

definition or by giving a declaration that specifies its name, parameters, and

return type. The function body can be later in the same file or in some other

file.



CSCI 1120 October 10, 2011

Slide 5

Parameter Passing in C

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as we did in the sort

program). Why “apparent exception”? because really what’s being passed to

the function is not the array but a pointer! so the copying produces a second

pointer to the same actual data. (More about pointers soon.)

Slide 6

Functions, Local Variables, and Recursion

• Functions in C can contain local variables. Every time you call the function,

you get a fresh copy of the variables.

• So yes, recursive functions work the way you (probably?) think they should.



CSCI 1120 October 10, 2011

Slide 7

Library Functions in C

• C does include a library of standard functions, though it’s not as extensive as

that of some languages.

• At least on UNIX-like systems, for each library function there should be a

man page that tells you about it, including information about #include

files you need and link-time options (e.g., -lm for sqrt). For now, be

advised that asterisks in types denote pointers, which we will talk about soon.

Slide 8

Functions in C — Examples

• Examples as time permits — some simple recursive functions, and a partial

array-sorting program.



CSCI 1120 October 10, 2011

Slide 9

Minute Essay

• What was interesting about Homework 2? What was difficult?


