
CSCI 1120 October 17, 2011

Slide 1

Administrivia

• Reminder: Homework 3 due today (accepted without penalty through end of

the day tomorrow).

• Note revision to reading for 10/10.

Slide 2

Pointers in C

• C, in contrast to Python and Scala, makes an explicit distinction between

things and pointers-to-things. As I understand things, in Python and Scala

variables are pointers/references to objects, and you deal with them fairly

abstractly. In C, you can have variables that are “things” (integers,

floating-point numbers, etc.) and variables that are “pointers to things” (in

some ways more like variables in Python and Scala, but very low-level and

with fewer safety checks).

• That is, in C, pointers are basically just memory addresses, though declared

to point to variables (or data) of a particular type. Example:

int * pointer to int;

double * pointer to double;

CSCI 1120 October 17, 2011

Slide 3

Pointers in C — Operators

• & gets a pointer to something in memory. So for example you could write

int x;

int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by

writing

*x ptr = 10;

• You can also perform arithmetic on pointers (e.g., ++x ptr) — something

not allowed in languages more concerned with safety.

Slide 4

Parameter Passing in C — Review

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as we did in the sort

program). Why “apparent exception”? because really what’s being passed to

the function is not the array but a pointer! so the copying produces a second

pointer to the same actual data.

• This is at least simple and consistent, but has annoying limitations . . .

CSCI 1120 October 17, 2011

Slide 5

Pass By Reference (Sort Of)

• A significant potential limitation on functions is that a function can only return

a single value. Pointers provide a way to get around this restriction: By

passing a pointer to something, rather than the thing itself, we can in effect

have a function return multiple things.

• To make this work, typically you declare the function’s parameters as pointers,

and pass addresses of variables rather than variables.

• (The “sort of” of the title means that this isn’t true pass by reference, as it

exists in some other languages such as C++, but it can be used to more or

less get the same effect.)

Slide 6

Pointers — Examples

• (Simple examples.)

• Calls to scanf should now make sense — the function is supposed to store

values into variable(s), and with pass-by-value we can’t do that unless we

pass a pointer.

CSCI 1120 October 17, 2011

Slide 7

Pointers Versus Arrays

• In C, pointers and arrays are in some sense(s) equivalent — not identical, but

in many contexts interchangeable.

• This is reflected in the man pages for many functions (e.g., printf —

strings are arrays of characters, as we will discuss next time). It also means

that when you pass an array to a function, what you’re actually passing is a

pointer — so the array is not copied.

Slide 8

Minute Essay

• Standard question — what was interesting about Homework 3? difficult?

