
CSCI 1120 November 14, 2011

Slide 1

Administrivia

• Homework 5 to be on the Web tomorrow. Due in a week.

Slide 2

I/O in C — Review

• getchar and putchar provide simple character-at-a-time I/O to

standard input/output.

• printf and scanf provide more sophisticated functionality, but again for

standard input/output.

• I/O redirection provides one way to work with files. Is there something more

general? Yes

CSCI 1120 November 14, 2011

Slide 3

Sidebar — Input/Output Redirection in UNIX/Linux

• In programming classes I talk about “reading from standard input” rather than

“reading from the keyboard”, and “writing to standard output” (or “writing to

standard error”) rather than “writing to the screen”.

• What’s the difference?

Slide 4

I/O Redirection, Continued

• stdin (standard input) can come from keyboard, file, or from another

program or shell script.

• stdout and stderr (standard output, error) can go to terminal or file

(overwrite or append), separately or together.

CSCI 1120 November 14, 2011

Slide 5

I/O Redirection, Continued

• For example — to redirect output of ls to ls.out, type

ls >ls.out

(Overwrites ls.out. To append, replace > with >>.)

To also redirect any error messages, append 2>&1.

• To redirect input, use <infile.

Slide 6

Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

UNIX/Linux doesn’t make a distinction, but some other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

CSCI 1120 November 14, 2011

Slide 7

Streams in C

• In C, streams are represented by the type FILE * — i.e., a pointer to a

FILE, which is something defined in stdio.h.

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr) for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams . . .

Slide 8

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file, as a C string.

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files, also a string.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

CSCI 1120 November 14, 2011

Slide 9

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To

write to an output stream — fprintf, almost identical to printf.

fgetc and fputc provide single-character input and output.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)

Slide 10

Reading Text Strings

• Getting text-string input is surprisingly tricky. scanf (or fscanf) seems

like an obvious choice, but:

– it can’t read a string that includes blanks, and

– it has no nice way to limit the number of characters read to the size of the

array being read into.

.

• Getting a whole line is probably better. gets() is an obvious/simple choice

for reading from standard input, but it also has no way to limit how much is

read. fgets() is better. (Look at its man page.)

(Also notice puts() — simple way to write out a text string.)

CSCI 1120 November 14, 2011

Slide 11

A Little About the C Preprocessor

• C logically divides the process of producing an executable into distinct

phases. First phase is “preprocessing”.

• Preprocessing makes use of “preprocessor directives”, which start with a #.

• Examples you’ve seen — #include to include information about library

functions, #define to define constants.

• Other functionality includes macros and “conditional compilation”. More in

chapter 14, some beyond the scope of this course. Focus is on relatively

simple text manipulation.

Slide 12

A Little More About gcc

• Many, many compiler options for gcc. One of the most useful is -Wall.

• To automate using them every time, you can use the UNIX utility make . . .

CSCI 1120 November 14, 2011

Slide 13

A Little About make

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.

Slide 14

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example on sample programs page.

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.

CSCI 1120 November 14, 2011

Slide 15

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99

• Or you could use

OPT = -O

CFLAGS = -Wall -pedantic -std=c99 $(OPT)

and then optionally override the -O by saying, e.g., make OPT=-g foo.

Slide 16

Minute Essay

• None — sign in.

