
CSCI 1120 November 21, 2011

Slide 1

Administrivia

• Reminder: Homework 5 due next Monday. (Yes, I’m changing the official due

date.)

Slide 2

Separate Compilation and Makefiles — Review

• C (like many languages) lets you split large programs into multiple

source-code files. Typical to put function and other declarations in files ending

.h, function definition in files ending .c. Compilation process can be

separated into “compile” (convert source to object code) and “link” (combine

object and library code to make executable) steps.

• UNIX utility make can help manage compilation process. Can also be useful

as a convenient way to always compile with preferred options. (Review last

few slides for previous lecture.)



CSCI 1120 November 21, 2011

Slide 3

User-Defined Types

• So far we’ve only talked about representing very simple types — numbers,

characters, text strings, arrays, and pointers. You might ask whether there are

ways to represent more complex objects, such as one can do with classes in

object-oriented languages.

• The answer is “yes, sort of” — C doesn’t provide nearly as much syntactic

help with object-oriented programming, but you can get something of the

same effect. But first, some simpler user-defined types . . .

Slide 4

User-Defined Types in C — typedef

• typedef just provides a way to give a new name to an existing type, e.g.:

typedef charptr char *;

• This can make your code more readable, or allow you to isolate things that

might be different on different platforms (e.g., whether to use float or

double in some application) in a single place.



CSCI 1120 November 21, 2011

Slide 5

User-Defined Types in C — enum

• In C (and in some other programming languages) an enumeration or an

enumerated type is just a way of specifying a small range of values, e.g.

enum basic_color { red, green, blue, yellow };

enum basic_color color = red;

This can make code more readable, and sometimes combines nicely with

switch constructs.

• Under the hood, C enumerated types are really just integers, though, and they

can be ugly to work with in some ways (e.g., no nice way to do I/O with them).

Slide 6

User-Defined Types in C — struct

• More complex (interesting?) types can be defined with struct, which lets

you define a new type as a collection of other types — something like a class

in an object-oriented language, but with no methods and no way to hide

fields/variables.

• Two versions of syntax (next slide) . . .



CSCI 1120 November 21, 2011

Slide 7

User-Defined Types in C — struct

• One way to define uses typedef:

typedef struct {

int dollars;

int cents;

} money;

money bank_balance;

• Another way doesn’t:

struct money {

int dollars;

int cents;

};

struct money bank_balance;

Slide 8

User-Defined Types in C — struct, Continued

• Either way you define a struct, how you access its fields is the same:

. if what you have is a struct itself:

struct money bank_balance;

bank_balance.dollars = 100;

bank_balance.cents = 100;

-> if what you have is a pointer to a struct:

struct money * bank_balance_ptr = &bank_balance;

bank_balance_ptr->dollars = 100;

bank_balance_ptr->cents = 100;



CSCI 1120 November 21, 2011

Slide 9

User-Defined Types in C — union

• For completeness, we should mention that C also provides a way of defining a

structure that can contain one of several alternatives (“this OR that”, as

opposed to the “this AND that” of struct) — union.

• See discussion in textbook about this; it can be useful, but can also make

code more difficult to understand.

Slide 10

Dynamic Memory and C

• With the C89 standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays in C99 standard help with that, but don’t solve all

related problems:

In many implementations, space is obtained for them on “the stack”, an area

of memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).



CSCI 1120 November 21, 2011

Slide 11

Dynamic Memory and C, Continued

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program can use) and have it stick around until we give it back to

the system.

(The trick here is that most implementations differentiate between two areas

of memory, a “stack” used for local variables, and a “heap” used for dynamic

memory allocation. Usually the former is more limited in size.)

• To request memory, use malloc. To return it to the system, use free.

(For short simple programs you can skip this, but not good practice, since in

“real” programs you may eventually run out of memory.)

• Python and Scala hide most of this from you — allocating space for objects is

automatic/hidden, and space is reclaimed by automatic garbage collection.

Makes for easier programming but possibly-unpredictable performance.

Slide 12

Dynamic Memory and C, Continued

• Examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *
20);

free(nums);

• Some books/resources recommend “casting” value returned by malloc.

Other references recommend the opposite! But you should check the value —

if NULL, system was not able to get that much memory.

• (Example — slightly improve sort program.)



CSCI 1120 November 21, 2011

Slide 13

Example — Singly-Linked List

• Now we have enough tools to do a low-level version of something probably

familiar to you — linked list. Idea is the same as in higher-level languages, but

must explicitly deal with many details.

• We could write some code, using two types of structs, one for the nodes

in the list and one for the list itself.

• (To be continued.)

Slide 14

Minute Essay

• TBA


