
CSCI 1120 January 31, 2011

Slide 1

Administrivia

• A request: You will turn in most if not all work for this course by e-mail. Please

include the name or number of the course in the subject line of your message,

plus something about which assignment it is, to help me get it into the correct

folder for grading.

Slide 2

Programming Basics (as described in CSCI 1320)

• What computers actually execute is machine language — binary numbers

each representing one primitive operation. Once upon a time, people

programmed by writing machine language (!).

• Nowadays, “programming” as we will use it means writing source code in a

high-level language. Source code is simply plain text, which . . . At this point

we diverge from the explanation for beginners. Exactly what happens to get

from source code to something the computer can execute varies among

languages . . .



CSCI 1120 January 31, 2011

Slide 3

From Source Code to — What?

• Some high-level languages (such as the language understood by typical

UNIX/Linux command shells) are directly interpreted by some other program.

• Others are compiled into object code (machine language) and then linked

with other object code (including system libraries) to form an executable

(something the operating system can execute).

• Still others (including Scala and Python (sometimes) take an intermediate

approach — initially compiled into byte code (object code for a made-up

processor), which is (in principle) interpreted by a runtime system, with

system library code brought in at runtime. (In practice, a “just-in-time”

compiler may translate byte code into native object code on the fly.)

Slide 4

Why Learn C? (For Java/Python/Scala Programmers)

• Java (and Scala and Python) provides a programming environment that’s nice

in many ways — lots of safety checks, nice features, extensive standard

library. But it hides a lot about how hardware actually works.

• C, in contrast, has been called “high-level assembly language” — so it seems

primitive in some ways compared to many other languages. What you get (we

think!) in return for the annoyances is more understanding of hardware — and

if you do low-level work (e.g., operating systems, embedded systems), it may

well be in C.



CSCI 1120 January 31, 2011

Slide 5

Structure of a C Program

• Pre-processor directives: These begin with # and are used to (among other

things) include in the compilation process information about libraries.

• Global identifiers (functions and variables). Function declarations here are

often useful; variables are usually bad practice.

• Function(s), possibly containing variables, returning values, etc. Every

complete program has exactly one main function.

• Syntax should look familiar to Java programmers (no accident — Java was

designed that way). Less familiar to Python and Scala programmers.

Slide 6

A Few Words About “Old C” Versus “New C”

• First ANSI standard for C — 1989. Widely adopted, but has some annoying

limitations.

• Later standard — 1999. Many features are widely implemented, but few

compilers support the full standard, and older programs (and some

programmers concerned about maximum portability) don’t use new features.

What we do in this class will focus on older standard for this reason.



CSCI 1120 January 31, 2011

Slide 7

A First C Program

• Let’s write the traditional “hello world” program in C, using vi.

(This tradition of having one’s first program in a language print “hello world”?

It comes from the early and still fairly authoritative book The C Programming

Language, by Kernighan and Ritchie.)

• Once it’s written, compile-and-link by typing gcc hello.c. (There are

other options you should use, but for now this is okay.) Result is a.out.

• Execute by typing a.out.

• Now let’s look at the program line by line . . .

Slide 8

Functions

• C programs are organized in terms of functions — as in other programming

languages, they’re a little like mathematical functions, except that evaluating

them can have “side effects”.

For example, evaluating the library function printf has the side effect of

writing some text to standard output (by default, displaying it in the terminal

window).

• A complete C program must contain a function called main. When you type

a.out, the operating system calls this function. The return value can be

used to indicate whether the program succeeded.



CSCI 1120 January 31, 2011

Slide 9

Variables in C

• To do anything interesting in a program, we need some place to store input

and intermediate values — “variables”.

• In C, variables must be declared, with a name and a type. In C89,

declarations must come before code.

• Variable names follow rules for identifiers — letters, numbers, and

underscores only, must start with letter or underscore, preferably letter.

Case-sensitive.

• Variable types? To the computer, “it’s all ones and zeros”; types say how we

want to interpret them (integers? characters?), define what kinds of things we

can do with a variable. Tutorial lists C’s built-in types. Some will work in gcc

only with the -std=c99 option.

Slide 10

Variable Types in C

• Integer types include int, short, long. (All can be declared

unsigned too.) Unlike in some language (such as Java), sizes of not

strictly defined — e.g., a Java int is exactly 32 bits, but a C int may be

more. (Why? to allow implementations to use whatever is most efficient.)

• Floating-point types include float, double. Binary equivalent of

scientific notation (with exponent and mantissa). Minimum size for double

is larger than for float so allows more significant figures, larger range.



CSCI 1120 January 31, 2011

Slide 11

Variable Types in C, Continued

• No Boolean type in C89, so programmers often use integers.

• char is an ASCII (not Unicode) character.

• Arrays represent collections of identical items (more about them later).

• Pointers provide a way to indirectly reference variables (more about them

later).

Slide 12

Sidebar — Compiler Options

• Earlier I showed the simplest way to use gcc to compile a program. But

there are many variations — options. Specify on the command line, ahead of

name of input file.

• Some of the most useful:

– -Wall and -pedantic warn you about dangerous and non-standard

things. -Wall highly recommended.

– -std=c99 allows you to use full C99.

– -o allows you to name the output file (default a.out).

• Automate with make (more later).



CSCI 1120 January 31, 2011

Slide 13

Output

• The “hello world” used printf to print some text. printf can do a lot

more.

• For example, we can use it to print integers, e.g.,

printf("the value of x is %d\n", x);

Slide 14

Sidebar — Man Pages, Revisited

• As mentioned earlier, most commands — and many library functions — have

“man pages” (short for “manual”). These are meant as online references

rather than tutorials, so not always easy reading, but usually very complete.

• man program shows its output to you using a program intended for paging

through text. On our systems, default is less. Keystroke commands include

space to go forward, b to go back, q to quit. h for help — or, of course, you

could read all about it (how?).

• Sometimes there are multiple commands/functions with the same name.

printf is one. man printf tells you about the (command-line)

command, not the C library function. To get all possibilities, man -a

printf. To get the one for the library function, man 3 printf.



CSCI 1120 January 31, 2011

Slide 15

Expressions in C

• C (like many other programming languages) has a notion of an expression.

Simple examples (assuming we’ve declared variables x and y):

– 5

– x

– y + 5

– (x + y) / 2

• Every expression has a value, and computing this value is called evaluating

the expression. Evaluate the above expressions, assuming x has value 10

and y has value 20 . . .

Slide 16

Expressions in C, Continued

• Sometimes evaluating an expression also produces changes to variables in

the expression or other variables; these are called side effects. Examples:

– x = 10

– printf("hello, world\n)

(Yes, really! Usually we don’t care about much about the values of these

expressions, just their side effects.)

• Many, many operators of different kinds. For now we’ll look only at the ones

for arithmetic.



CSCI 1120 January 31, 2011

Slide 17

Arithmetic Expressions — Operators

• Usual arithmetic operators +, -, * (multiplication), / (division). (+ and - can

be unary too.)

Notice that division, applied to integers, discards any remainder. This is so

the result will be an integer too, and can even be useful. What if you want a

fraction? Later.

• Also % operator for getting remainder; e.g., x % 2 is 0 if x is even, 1 if it’s

odd.

• Other useful arithmetic operators include pre/post increment/decrement, bit

shifts.

• Expressions can be quite complex. How they’re evaluated depends on rules

of precedence and associativity. My advice — when in doubt, use

parentheses! Example: (x + y) / 2 versus x + y / 2.

Slide 18

Statements in C

• C programs are made up of statements (usually collected inside functions.

• Statements come in several types:

– Null (;).

– Expression (expression ;).

– Return (return expression ;).

– Compound (more later).



CSCI 1120 January 31, 2011

Slide 19

Functions

• Functions similar in concept to those in many other programming languages,

with a couple of key distinctions:

– They have to be declared (or defined) before being referenced.

Declaration includes name, return type, and formal parameters.

– Pass-by-value semantics for parameters means you need pointers if you

want to modify/return more than a single value.

• Library functions (e.g., printf) documented in man page. To use them, be

sure to include the appropriate #include.

Slide 20

Minute Essay

• Was everything clear today?

• Is the reading making sense to you?


