
CSCI 1120 March 7, 2011

Slide 1

Administrivia

• Reminder: Homework 2 was due last week. Only two people have turned

anything in. Problems?

Slide 2

C Basics and Arrays — Review/Recap

• C has the same control structures as most other procedural programming

languages (assignment, if/then/else, loops), which should all be familiar

except for syntax. Explicit variable declarations will be new to Python

programmers.

• C arrays should also be a familiar idea, but they’re low-level constructs,

without some of the nice features of lists/arrays in other languages.

CSCI 1120 March 7, 2011

Slide 3

Strings in C

• Many languages have nice ways of working with text (character strings). What

C provides is — no surprise — somewhat primitive.

• In C, strings are arrays of chars, with the convention that the actual text of

interest is followed by a null character (8-bit zero, represented in code as

’\0’.

• You can operate on individual characters however you see fit (accessing them

as elements of the array). There are also standard library functions for some

common operations (e.g., strcmp to compare two strings — similar to

compareTo in Java).

• A significant source of potential trouble — most functions assume that strings

are properly terminated, and (worse) many have no safety check to make

sure you don’t overflow a destination array.

Slide 4

Pointers in C

• C, in contrast to Python and Scala, makes an explicit distinction between

things and pointers-to-things. As I understand things, in Python and Scala

variables are pointers/references to objects, and you deal with them fairly

abstractly. In C, you can have variables that are “things” (integers,

floating-point numbers, etc.) and variables that are “pointers to things” (in

some ways more like variables in Python and Scala, but very low-level and

with fewer safety checks).

• That is, in C, pointers are basically just memory addresses, though declared

to point to variables (or data) of a particular type. Example:

int * pointer to int;

double * pointer to double;

CSCI 1120 March 7, 2011

Slide 5

Pointers in C — Operators

• & gets a pointer to something in memory. So for example you could write

int x;

int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by

writing

*x ptr = 10;

• You can also perform arithmetic on pointers (e.g., ++x ptr) — something

not allowed in languages more concerned with safety.

Slide 6

Parameter Passing in C

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as we did in the sort

program). Why “apparent exception”? because really what’s being passed to

the function is not the array but a pointer! so the copying produces a second

pointer to the same actual data.

• This is at least simple and consistent, but has annoying limitations . . .

CSCI 1120 March 7, 2011

Slide 7

Pass By Reference (Sort Of)

• A significant potential limitation on functions is that a function can only return

a single value. Pointers provide a way to get around this restriction: By

passing a pointer to something, rather than the thing itself, we can in effect

have a function return multiple things.

• To make this work, typically you declare the function’s parameters as pointers,

and pass addresses of variables rather than variables.

• The “sort of” of the title means that this isn’t true pass by reference, as it

exists in some other languages such as C++, but it can be used to more or

less get the same effect.

Slide 8

Pointers Versus Arrays

• In C, pointers and arrays are in some sense(s) equivalent — not identical, but

in many contexts interchangeable.

• This is reflected in the man pages for many functions (e.g., printf). It also

means that when you pass an array to a function, what you’re actually

passing is a pointer — so the array is not copied.

CSCI 1120 March 7, 2011

Slide 9

Minute Essay

• For various reasons there is no required textbook for this course, only an

online tutorial. Does it provide enough information, or would you rather have

been asked to purchase a textbook?

