CSCI 1120 March 7, 2011

Administrivia

o Reminder: Homework 2 was due last week. Only two people have turned

anything in. Problems?

Slide 1

C Basics and Arrays — Review/Recap

e C has the same control structures as most other procedural programming
languages (assignment, if/then/else, loops), which should all be familiar
except for syntax. Explicit variable declarations will be new to Python

programmers.

Slide 2 e C arrays should also be a familiar idea, but they're low-level constructs,

without some of the nice features of lists/arrays in other languages.

CSCI 1120 March 7, 2011

(Strings in C)

o Many languages have nice ways of working with text (character strings). What

C provides is — no surprise — somewhat primitive.

In C, strings are arrays of char s, with the convention that the actual text of
interest is followed by a null character (8-bit zero, represented in code as
Slide 3 A

® You can operate on individual characters however you see fit (accessing them
as elements of the array). There are also standard library functions for some
common operations (e.g., St r CNP to compare two strings — similar to
conpar eTo in Java).

e A significant source of potential trouble — most functions assume that strings
are properly terminated, and (worse) many have no safety check to make

sure you don't overflow a destination array.

. J

Pointers in C

e C, in contrast to Python and Scala, makes an explicit distinction between
things and pointers-to-things. As | understand things, in Python and Scala
variables are pointers/references to objects, and you deal with them fairly
abstractly. In C, you can have variables that are “things” (integers,

) floating-point numbers, etc.) and variables that are “pointers to things” (in

Slide 4 some ways more like variables in Python and Scala, but very low-level and

with fewer safety checks).
e Thatis, in C, pointers are basically just memory addresses, though declared
to point to variables (or data) of a particular type. Example:

int » pointer_to.nt;
doubl e * pointer_to._double;

CSCI 1120 March 7, 2011

Pointers in C — Operators

e & gets a pointer to something in memory. So for example you could write
int Xx;
int » xptr = &x;
e * “dereferences” a pointer. So for example you could change X above by
Slide 5 writing
*x_ptr = 10;
® You can also perform arithmetic on pointers (e.g., ++X_pt r) — something

not allowed in languages more concerned with safety.

Parameter Passing in C

e In C, all function parameters are passed “by value” — which means that the
value provided by the caller is copied to a local storage area in the called
function. The called function can change its copy, but changes aren’t passed

back to the caller.

Slide 6 e An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as we did in the sort
program). Why “apparent exception”? because really what's being passed to
the function is not the array but a pointer! so the copying produces a second

pointer to the same actual data.

e This is at least simple and consistent, but has annoying limitations . ..

CSCI 1120 March 7, 2011

Pass By Reference (Sort Of)

e A significant potential limitation on functions is that a function can only return
a single value. Pointers provide a way to get around this restriction: By
passing a pointer to something, rather than the thing itself, we can in effect
have a function return multiple things.

Slide 7 e To make this work, typically you declare the function’s parameters as pointers,

and pass addresses of variables rather than variables.

e The “sort of” of the title means that this isn’t true pass by reference, as it
exists in some other languages such as C++, but it can be used to more or
less get the same effect.

4)

Pointers Versus Arrays

e In C, pointers and arrays are in some sense(s) equivalent — not identical, but

in many contexts interchangeable.

e This is reflected in the MaN pages for many functions (e.g., pri nt f). it also
means that when you pass an array to a function, what you're actually
Slide 8 passing is a pointer — so the array is not copied.

CSCI 1120 March 7, 2011

e For various reasons there is no required textbook for this course, only an
online tutorial. Does it provide enough information, or would you rather have

been asked to purchase a textbook?

Slide 9

