
CSCI 1120 March 21, 2011

Slide 1

Administrivia

• Homework 1 graded; sample solution on the Web.

• Homework 3 will be on the Web tomorrow, due next Monday.

Slide 2

Strings in C — Review/Recap

• Many languages have nice ways of working with text (character strings). What

C provides is — no surprise — somewhat primitive.

• In C, strings are arrays of chars, with the convention that the actual text of

interest is followed by a null character (8-bit zero, represented in code as

’\0’.



CSCI 1120 March 21, 2011

Slide 3

Sidebar — Variables and Memory

• Many languages provide a rather abstract view of data/variables, which is

convenient but hides the low-level workings.

• C, in contrast, typically exposes a much lower-level view: Memory is a big

one-dimensional space, typically partitioned into small units (bytes) consisting

of binary digits (bits). When you declare a variable, the compiler reserves

some space (amount determined by the variable’s type) and associates it with

the variable’s name and type. The name provides a way to access that piece

of memory; the type determines how the bits will be interpreted (as a binary

integer, as an array of ASCII characters, etc.).

(I say “typically” here because there are probably exceptions — there are C

compilers for a lot of systems, some of them fairly offbeat by current

standards.)

Slide 4

Pointers in C — Review/Recap

• C, in contrast to Python and Scala, makes an explicit distinction between

things and pointers-to-things. Pointers-to-things are essentially memory

addresses, though usually declared to point to variables (or data) of a

particular type. (Exception: a “void” pointer can point to data of any type. See

man page for memcpy for example.)

• Two useful operators are & (“address of”) and * (dereference).

• In C, pointers and arrays are in some sense(s) equivalent — not identical, but

in many contexts interchangeable. This is reflected in the man pages for

many functions (e.g., printf).



CSCI 1120 March 21, 2011

Slide 5

Parameter Passing in C

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as we did in the sort

program). Why “apparent exception”? because really what’s being passed to

the function is not the array but a pointer! so the copying produces a second

pointer to the same actual data.

• This is at least simple and consistent, but has annoying limitations . . .

Slide 6

Pass By Reference (Sort Of)

• A significant potential limitation on functions is that a function can only return

a single value. Pointers provide a way to get around this restriction: By

passing a pointer to something, rather than the thing itself, we can in effect

have a function return multiple things.

• To make this work, typically you declare the function’s parameters as pointers,

and pass addresses of variables rather than variables.

• The “sort of” of the title means that this isn’t true pass by reference, as it

exists in some other languages such as C++, but it can be used to more or

less get the same effect.

(Example.)



CSCI 1120 March 21, 2011

Slide 7

I/O in C — Preview

• You already know about a function to write output to “standard output”,

printf. Many options, allowing a lot of control over what’s printed.

• How about input? Counterpart of printf is scanf (skim man page).

Simple to use, though error detection is somewhat crude, and reading text

strings can be hazardous.

Slide 8

Minute Essay

• TBA


