
CSCI 1120 March 28, 2011

Slide 1

Administrivia

• Reminder: Homework 3 due today.

• Homework 4 will be on the Web tomorrow; due next week.

Slide 2

Arrays and Pointers — A Correction/Clarification

• I’ve said that C, unlike higher-level languages, doesn’t try to detect

out-of-bounds array accesses or attempts to dereference null or invalid

pointers. I’ve also said what often happens with arrays. But in fact . . .

• The C standard is fairly specific about what things programmers should not

do (at least if they’re trying to write portable code). What it doesn’t say is what

should happen if you break the rules! the behavior I’ve described is typical but

not guaranteed. Caveat programmer!

CSCI 1120 March 28, 2011

Slide 3

I/O in C — Some Very Basic Functions

• getchar gets one character and returns it as an int. The special value

EOF indicates end of input. (“End of input”? control-D from terminal, more in

next sidebar.)

• putchar writes out one character.

• We could use this to write a very simple program that simply copies its input

to its output . . .

Slide 4

I/O in C, Continued

• You already know about a function to write output to “standard output”,

printf. Many options, allowing a lot of control over what’s printed.

• How about input? Counterpart of printf is scanf, as described last

time. Simple to use, though error detection is somewhat crude, and reading

text strings can be hazardous.

• One way to work with files is I/O redirection. Is there something more

general? Yes

CSCI 1120 March 28, 2011

Slide 5

Sidebar — Input/Output Redirection in UNIX/Linux

• In programming classes I talk about “reading from standard input” rather than

“reading from the keyboard”, and “writing to standard output” (or “writing to

standard error”) rather than “writing to the screen”.

• What’s the difference?

Slide 6

I/O Redirection, Continued

• stdin (standard input) can come from keyboard, file, or from another

program or shell script.

• stdout and stderr (standard output, error) can go to terminal or file

(overwrite or append), separately or together.

CSCI 1120 March 28, 2011

Slide 7

I/O Redirection, Continued

• For example — to redirect output of ls to ls.out, type

ls >ls.out

(Overwrites ls.out. To append, replace > with >>.)

To also redirect any error messages, append 2>&1.

• To redirect input, use <infile.

Slide 8

Streams

• C’s notion of file I/O is based on the notion of a stream — a sequence of

characters/bytes. Streams can be text (characters arranged into lines

separated by something platform-dependent) or binary (any kind of bytes).

UNIX/Linux doesn’t make a distinction, but some other operating systems do.

• An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

• An output stream is a sequence of characters/bytes produced by your

program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

CSCI 1120 March 28, 2011

Slide 9

Streams in C

• In C, streams are represented by the type FILE * — i.e., a pointer to a

FILE, which is something defined in stdio.h.

• A few streams are predefined — stdin for standard input, stdout for

standard output, stderr) for standard error (also output, but distinct from

stdout so you can separate normal output from error messages if you

want to).

• To create other streams . . .

Slide 10

Creating Streams in C

• To create a stream connected with a file — fopen.

• Parameters, from its man page:

– First parameter is the name of the file, as a C string.

– Second parameter is how we want to access the file – read or write,

overwrite or append — plus a b for binary files, also a string.

– Return value is a FILE * — a somewhat mysterious thing, but one we

can pass to other functions. If NULL, the open did not succeed. (Can you

think of reasons this might happen?)

CSCI 1120 March 28, 2011

Slide 11

Working With Streams in C

• To read from an input stream — fscanf, almost identical to scanf. To

write to an output stream — fprintf, almost identical to printf.

fgetc and fputc may also be useful.

• When done with a stream, fclose to tidy up. (Particularly important for

output files, which otherwise may not be completely written out.)

Slide 12

Reading Text Strings

• Getting text-string input is surprisingly tricky. scanf (or fscanf) seems

like an obvious choice, but:

– it can’t read a string that includes blanks, and

– it has no nice way to limit the number of characters read to the size of the

array being read into.

.

• Getting a whole line is probably better. gets() is an obvious/simple choice

for reading from standard input, but it also has no way to limit how much is

read. fgets() is better. (Look at its man page.)

(Also notice puts() — simple way to write out a text string.)

CSCI 1120 March 28, 2011

Slide 13

One More Way to Get Input — Command-Line
Arguments

• Now that we know about arrays, pointers, and text strings, we can talk about

command-line arguments. What are they? text that comes after the name of

the program on the command line (e.g., when you write gcc -Wall

myprogram.c, there are are two command-line arguments), possibly

modified by the shell (e.g., for filename wildcards).

• Most programming languages provide a way to access this text, often via

some sort of argument to the main function/method. In C, the arguments are

passed to main as an array of text strings. So if you define main as

int main(int argc, char * argv[]) { }

argc is the number of arguments, plus one, and argv is an array of strings

containing the arguments.

(Examples as time permits.)

Slide 14

Minute Essay

• Can you think of situations in which I/O redirection would be useful?

CSCI 1120 March 28, 2011

Slide 15

Minute Essay Answer

• There are several, possibly many. One is for program testing — you put the

input in a file, run the program with input redirected to come from that file, and

capture the output. If you later change the program, you can easily determine

whether it still produces the same results, by capturing output again and

comparing (e.g., with diff) to the old output.

