
CSCI 1120 April 18, 2011

Slide 1

Administrivia

• Homework 5 will be on the Web soon. Due next week.

Slide 2

Function Pointers

• You know from more-abstract languages that there are situations in which it’s

useful to have method parameters that are essentially code. Some languages

make that easy (functions are “first-class objects”) and others don’t, but

almost all of them provide some way to do it, since it’s so useful — e.g.,

providing a “less-than” function for a generic sort.

• In C, you do this by explicitly passing a pointer to the function.



CSCI 1120 April 18, 2011

Slide 3

Function Pointers in C

• The type of a function pointer includes information about the number and

types of parameters, plus the return type.

• Example — last parameter to library function qsort (in its man page). Call

this by providing, in your code, a function with declaration

int my compare(const char *, const char *);

and using my compare as the last parameter to qsort.

(Revise sort example to try this.)

Slide 4

Pointers Versus Arrays — One More Thing

• We’ve said that pointers and arrays are in most contexts equivalent. One

potential benefit of this is that it can make it easier to work with substrings,

subarrays, etc.

• Example — one more revision of the string-length example, using recursion.



CSCI 1120 April 18, 2011

Slide 5

User-Defined Types, Review/Recap

• Last time we discussed various kinds of “user-defined” types (typedef,

struct, etc.).

• As an example, let’s write code to implement a singly-linked list. This is also

an example of how one might implement, at a low level, one of the nice

abstractions (lists) found in higher-level languages.

• But first — we may end up with more code than will comfortably fit into one

file, so a bit more about compiling . . .

Slide 6

A Little More About gcc

• Many, many compiler options for gcc. One of the most useful is -Wall.

• To automate using them every time, you can use the UNIX utility make . . .



CSCI 1120 April 18, 2011

Slide 7

A Little About make

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.

Slide 8

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example (assuming main.c #includes defs.h and foo.h):

main: main.o foo.o

gcc -o main main.o foo.o

main.o: main.c defs.h foo.h

gcc -c main.c

foo.o: foo.c

gcc -c foo.c

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.



CSCI 1120 April 18, 2011

Slide 9

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99

• Or you could use

OPT = -O

CFLAGS = -Wall -pedantic -std=c99 $(OPT)

and then optionally override the -O by saying, e.g., make OPT=-g foo.

Slide 10

Example — Singly-Linked List

• Consider code for a singly-linked list of integers, using two structs, one for

list nodes and one for the list itself.

• To make things more interesting, we could write all the functions to use

recursion.

• (Start looking at code.)



CSCI 1120 April 18, 2011

Slide 11

Minute Essay

• None — sign in.


