CSCI 1120 September 19, 2012

Administrivia

e ACM is offering tutoring, by appointment. Details by e-mail.
o Reminder: Homework 1 due today (11:59pm).

o Homework 2 on the Web. Due next week.

Slide 1
Conditional Execution — One More Thing
e Last time we looked at if/else syntax.
e One other conditional-execution construct you may encounter — SWi t ch.
Basically a short form of if/elseif/else. Somewhat like mat ch in Scala but
nowhere near as powerful. Example:
Slide 2 char c; /+ code to set value omtted =*/

switch (c¢) {
case 'a': printf("first case\n"); break;
case 'b’: printf("second case\n"); break;
default: printf("default\n");

CSCI 1120 September 19, 2012

Repetition — Loops

e C, like most/many procedural languages, offers several syntaxes for

repetition. (One of them, recursion, we’ll talk about later.)

e All have some way of expressing common elements (explicitly, rather than the
“do for all” syntax allowed by some languages):

Slide 3 — Initializer (as its name suggests).

— Condition (determines whether repetition continues).

— Body (code to repeat).

— Iterator (something that moves on to next iteration).

4 whi | e Loops)

e Probably the simplest kind of loop. You decide where to put initializer and
iterator. Test happens at start of each iteration.

o Example — print numbers from 1 to 10:

int n=1; [+ initializer */
while (n <= 10) { [+ condition =/
Slide 4 printf("%\n", n); /* body */
n=n+1; /* iterator =/

}
e Various shortwaystowriten = n + 1:

n += 1;

n++;

++n;

What do you think happens if we leave out this line?

_

CSCI 1120 September 19, 2012

f or Loops

e Probably the most common type of loop. Particularly useful for anything
involving counting, but can be more general. Syntax has explicit places for

initializer, condition, iterator (so it's less likely you'll forget one of them).

o Example — print numbers from 1 to 10:

Slide 5 for (int n =1; n <= 10; ++n) {
printf("%\n", n);

}

e |nitializer happens once (at start); condition is evaluated at the start of each
iteration; iterator is executed at the end of each iteration. (Note that C89
standard required that N be declared outside the loop.)

do whi | e Loops

e Looks very similar to Whi | e loop, but test happens at end of each iteration.

o Example — print numbers from 1 to 10:

int n=1; [+ initializer =/
do {
Slide 6 printf("%l\n", n); [+ body */
n=n+1; [+ iterator =*/
} while (n <= 10); [+ condition */

CSCI 1120 September 19, 2012

Loops — Example

e Simple example — loop to read integers and compute their sum. (Don’t we

need a place to store them all? No!)

e (Variant of example in book.)

Slide 7

Arrays

e Previously we've talked about how to reserve space for a single

number/character and give it a name.

e Arrays extend that by allowing you to reserve space for many
numbers/characters and give a common name to all. You can then reference

Slide 8 an individual element via its index (similar to subscripts in math).

CSCI 1120 September 19, 2012

Arrays in C

e Declaring an array — give its type, name, and how many elements.
Examples:
int nuns[10];
doubl e stuff[N;

Slide 9 (The second example assumes Nis declared and given a value previously. In
C89, it had to be a constant. In C99, it can be a variable.)

e Referencing an array element — give the array name and an index (ranging
from 0 to array size minus 1). Index can be a constant or a variable. Then use
as you would any other variable. Examples:

nuns[0] = 20;
printf("%\n", nuns[0]);

(Notice that the second example passes an array element to a function. AOK!)

. J

Arrays in C, Continued

e \We said if you declare an array to be of size 1 you can reference elements
with indices 0 through n — 1. What happens if you reference element -1? n?
2n?

o Well, the compiler won’t complain. At runtime, the computer will happily
Slide 10 compute a memory address based on the starting point of the array and the

index. If the index is “in range”, all is well. If it's not (i.e., it's “out of bounds) ...

CSCI 1120 September 19, 2012

Arrays in C, Continued

e (What happens if you try to access an array with an index that's out of
bounds?)

e “Results are unpredictable.” Maybe it's outside the memory your program can
access, in which case you may get the infamous “Segmentation fault” error
Slide 11 message (or with newer compilers you may get a screenful of equally cryptic

messages).

Almost worse is if it's not — then what's at the computed memory address
might be some other variable in your program, which will then be
accessed/changed. This is the essence of the buffer overflows you hear

mentioned in connection with security problems.

e What to do? Be careful. (Probably worth noting here that more-recent

languages are apt to check for such errors.)

Arrays — Example

e Back story: Conventional wisdom says that many library functions for
generating sequences of random numbers aren’t very random in their
least-significant bits, so mapping their output to a small range using the mod
operator isn't a good idea.

Slide 12 e We could write a short program to check, in a crude way, whether that's true,
or at least how well the results are distributed over the range: Prompt for how
many “random” numbers to generate and for a divisor, then generate the
sequence, divide each by the divisor, and count how many have remainder 0,
remainder 1, etc.

CSCI 1120 September 19, 2012

4)

e What did you find interesting about Homework 1? What did you find difficult?

(Optional question — okay to just sign in.)

Slide 13

