
CSCI 1120 November 7, 2012

Slide 1

Administrivia

• Next homework will be on the Web probably tomorrow. I will send mail.

Slide 2

A Little About make — Review

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.



CSCI 1120 November 7, 2012

Slide 3

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example on sample programs page.

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.

Slide 4

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99

• Or you could use

OPT = -O

CFLAGS = -Wall -pedantic -std=c99 $(OPT)

and then optionally override the -O by saying, e.g., make OPT=-g foo.



CSCI 1120 November 7, 2012

Slide 5

Dynamic Memory and C

• With the C89 standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays in C99 standard help with that, but don’t solve all

related problems:

In many implementations, space is obtained for them on “the stack”, an area

of memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).

Slide 6

Dynamic Memory and C, Continued

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program can use) and have it stick around until we give it back to

the system.

(The trick here is that most implementations differentiate between two areas

of memory, a “stack” used for local variables, and a “heap” used for dynamic

memory allocation. Usually the former is more limited in size.)

• To request memory, use malloc. To return it to the system, use free.

(For short simple programs you can skip this, but not good practice, since in

“real” programs you may eventually run out of memory.)

• Python and Scala hide most of this from you — allocating space for objects is

automatic/hidden, and space is reclaimed by automatic garbage collection.

Makes for easier programming but possibly-unpredictable performance.



CSCI 1120 November 7, 2012

Slide 7

Dynamic Memory and C, Continued

• Examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *
20);

free(nums);

• Some books/resources recommend “casting” value returned by malloc.

Other references recommend the opposite! But you should check the value —

if NULL, system was not able to get that much memory.

• (Example — improved sort program.)

Slide 8

Function Pointers

• You know from more-abstract languages that there are situations in which it’s

useful to have method parameters that are essentially code. Some languages

make that easy (functions are “first-class objects”) and others don’t, but

almost all of them provide some way to do it, since it’s so useful — e.g.,

providing a “less-than” function for a generic sort.

• In C, you do this by explicitly passing a pointer to the function.



CSCI 1120 November 7, 2012

Slide 9

Function Pointers in C

• The type of a function pointer includes information about the number and

types of parameters, plus the return type.

• Example — last parameter to library function qsort (in its man page). Call

this by providing, in your code, a function with declaration

int my compare(const char *, const char *);

and using my compare as the last parameter to qsort.

• (Example — improved sort program.)

Slide 10

Pointers Versus Arrays — One More Thing

• We’ve said that pointers and arrays are in most contexts equivalent. One

potential benefit of this is that it can make it easier to work with substrings,

subarrays, etc.

• Example — one more revision of the string-length example, using recursion.



CSCI 1120 November 7, 2012

Slide 11

Minute Essay

• TBA

Slide 12

Minute Essay Answer

• TBA


