CSCI 1120 (Low-Level Computing), Spring 2012

Homework 3

Credit: 20 points.

1 Reading

Be sure you have read the assigned readings for classes through 3/05.

2 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.
trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 1120 homework 3”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (10 points) Complete the sample sort program we wrote in class by filling in the sort
function. (You can find it linked from the course “sample programs” page here'.)

It’s completely up to you which sorting algorithm to implement, though I'm inclined to
recommend that you just do one of the simple-but-slow ones (e.g., bubble sort or selection
sort). If you feel ambitious, you could try quicksort or mergesort, though mergesort is apt
to be more trouble since it requires a work array. Please say in comments at the start of the
program which sorting algorithm you’re implementing. Feel free to make other alterations to
the program (e.g., adding more functions, though depending on your choice of algorithm you
might want to just do everything in sort).

2. (10 points) In class we wrote a simple recursive function to compute an element of the
Fibonacci sequence and a main program to test it. We observed that the program was quite
slow for all but fairly small inputs, and we discussed why — the simple function does quite
a lot of duplicate computation. One way to improve the performance of such a function is
with a technique referred to as memoization, in which every time we compute a result we
save it for possible reuse. Your mission for this problem is to take the program from class (or
the somewhat improved version on the course “sample programs” page @2), add a second
recursive function to compute an element of the Fibonacci sequence using memoization, and
compare the performance of the two functions. (The version of the program on the “sample
programs” page does error checking of its input and also returns a long rather than an int
from the Fibonacci function, to allow it to return values bigger than will fit into an int.)
Sample output for an input of 46:

"Mttp://www.cs.trinity.edu/~bmassing/Classes/CS1120_2012spring/SamplePrograms/Programs/sort.c
“http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2012spring/SamplePrograms/Programs/
fibonacci.c



CSCI 1120 Homework 3 Spring 2012

result (simple implementation): 2971215073, time 23.6019
result (memoized implementation): 2971215073, time 9.53674e-07

(I'm not fussy about details as long as you print both the result of the computation and how
long it took.)

For the function, a simple way to use memoization is to have an array for saving previously-
computed results, with the n-th element of the Fibonacci sequence stored as the n-th element
of the array, and a value of 0 meaning “has not been previously computed”. This array
probably should be passed to the function, but it could be a global variable. The program
should do something reasonable if this array is not big enough, perhaps just rejecting any
input that would overflow it.

For comparing performance, what is useful is a function that gets the time of day with
sufficient precision to allow for meaningful measurements of elapsed time. Unfortunately the
C standard library does not have anything that makes that easy, but I wrote a Linux-specific
function that gets the time of day as a double, which you can use. To do that, first get a
copy of the file timer.h? and put it in the directory with your code. Sample usage of the
function (notice the #include line):

/* other #include lines */
#include "timer.h"

/* other code */

double start_time, end_time;

start_time = get_time();

/* computation to time */

end_time = get_time();

/* print difference between end_time and start_time */

/* other code */

Shttp://www.cs.trinity.edu/~bmassing/Classes/CS1120_2012spring/SamplePrograms/Programs/timer.h



