CSCI 1120 (Low-Level Computing), Spring 2012

Homework 5

Credit: 20 points.

1 Reading

Be sure you have read the assigned readings for classes through 4/16.

2 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.
trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 1120 homework 5”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (20 points) Write a C program that sorts the lines in a text file using the library function
gsort. The program should take the name of the file to sort as a command-line argument
(and print appropriate error messages if none is given or the one given cannot be opened)
and write the result of the sort to standard output.

To do this, I think you will need to read the whole file into memory. There are various ways
to do this, but the method I have in mind (for learning purposes) involves reading the whole
file into memory and then building an array of pointers to individual lines. Here is a function

you can use (on Linux systems anyway) to determine how much memory to allocate for the
file:

#include <sys/types.h>
#include <sys/stat.h>
#include <unistd.h>
/* returns size of file *filename in bytes, or -1 on error */
int filesize(char * filename) {

struct stat status;

if (stat(filename, &status) == -1) {

return -1;

}
else {

return (int) status.st_size;
}



CSCI 1120 Homework 5 Spring 2012

(The above description is deliberately not very detailed. More detailed hints about how to
proceed available on request, but I want you to think about the problem yourself first.)

Hints:

e You can use the library function strcmp to compare two strings.

e The “sample programs” page contains an example of using gsort. (Notice that while
it checks the result of the sort for correctness, your program does not need to do that;
instead you are to print the results of the sort.)

sort-improved.c!

2. (Optional — up to 20 extra-credit points) Write a C program that implements and tests
one of the linked-list-like data structures listed below. For ease of coding, just make the
program self-contained (rather than having it get input from a human), similar to the example
implementation of unordered singly linked lists we looked at in class. (You can find it linked
from the course “sample programs” page here?. You can put the whole program in one file,
or separate it into multiple files as I did in the example.

Possible data structures are the following:

e Sorted singly linked list (of ints or another data type). Include functions to

— create an empty list

— free all memory associated with a list

— add an element

— remove a selected element (everywhere it occurs, or only the first occurrence),

— search for a selected element (you could have it return something consistent with
the C89 idea of a boolean — zero is “false” and anything nonzero is “true” — or
have it return a count of how many times the element occurs in the list)

— print all elements of the list to a specified output stream (you could also include
a parameter for the print format, as in the example program, or just hardcode
something).

You can add additional functions for extra credit (amount of credit depending on diffi-
culty).

e Unsorted or sorted doubly linked list (of ints or another data type). A doubly linked
list is one in which each element has pointers to both the next element and the previous
element. Include functions as for the sorted singly linked list described above, plus a
function to print the elements in reverse order. You can add additional functions for
extra credit (amount of credit depending on difficulty).

e Binary search tree (of ints or another data type). This is a tree data structure in which
every node n has the property that all nodes in its left subtree store values smaller than
the value in n and all elements in its right subtree store values larger than the value in

"http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2012spring/SamplePrograms/Programs/
sort-improved.c
Zhttp://www.cs.trinity.edu/~bmassing/Classes/CS1120_2012spring/SamplePrograms/



CSCI 1120

Homework 5 Spring 2012

n. (If you haven’t encountered this data structure before, I can explain in more detail.)
Include functions to

create an empty tree

free all memory associated with a tree

add an element (for simplicity, you can disallow duplicates, and simply do nothing
if a request is made to add something that’s already present)

search for a selected element (you could have it return something consistent with
the C89 idea of a boolean — zero is “false” and anything nonzero is “true”)

print all elements of the tree to a specified output stream (you could also include
a parameter for the print format, as in the example program, or just hardcode
something).

(This list doesn’t include a function to remove elements because that’s trickier.) You
can add additional functions for extra credit (amount of credit depending on difficulty).

e Some other data type whose implementation involves dynamically allocated storage and
pointers (but ask me before you do this).

You're welcome to use the example from class as a model or starting point, but you will
probably learn more if you write most of the implementation of your chosen data structure

yourself.

Your functions can be recursive, as in the example, or not.



