
CSCI 1120 January 30, 2012

Slide 1

Administrivia

• (None.)

Slide 2

Programming Basics (as described in CSCI 1320)

• What computers actually execute is machine language — binary numbers

each representing one primitive operation. Once upon a time, people

programmed by writing machine language (!).

• Nowadays, “programming” as we will use it means writing source code in a

high-level language. Source code is simply plain text, which . . . At this point

we diverge from the explanation for beginners. Exactly what happens to get

from source code to something the computer can execute varies among

languages . . .



CSCI 1120 January 30, 2012

Slide 3

From Source Code to — What?

• Some high-level languages (such as the language understood by typical

UNIX/Linux command shells) are directly interpreted by some other program.

• Others are compiled into object code (machine language) and then linked

with other object code (including system libraries) to form an executable

(something the operating system can execute).

• Still others (including Scala and Python, sometimes) take an intermediate

approach — initially compiled into byte code (object code for a made-up

processor), which is (in principle) interpreted by a runtime system, with

system library code brought in at runtime. (In practice, a “just-in-time”

compiler may translate byte code into native object code on the fly.)

Slide 4

Structure of a C Program

• Pre-processor directives: These begin with # and are used to (among other

things) include in the compilation process information about libraries.

• Global identifiers (functions and variables). Function declarations here are

often useful; variables are usually bad practice.

• Function(s), possibly containing variables, returning values, etc. Every

complete program has exactly one main function.

• Syntax should look familiar to Java programmers (no accident — Java was

designed that way). Less familiar to Python and Scala programmers.



CSCI 1120 January 30, 2012

Slide 5

A Few Words About “Old C” Versus “New C”

• First ANSI standard for C — 1989. Widely adopted, but has some annoying

limitations.

• Later standard — 1999. Many features are widely implemented, but few

compilers support the full standard, and older programs (and some

programmers concerned about maximum portability) don’t use new features.

Much of what we do in this class will focus on older standard for this reason.

Slide 6

A First C Program

• Let’s write the traditional “hello world” program in C, using vi.

(This tradition of having one’s first program in a language print “hello world”?

It comes from the early and still fairly authoritative book The C Programming

Language, by Kernighan and Ritchie.)

• Once it’s written, compile-and-link by typing gcc hello.c. (There are

other options you should use, but for now this is okay.) Result is a.out.

• Execute by typing a.out.

• What does all this mean? first . . .



CSCI 1120 January 30, 2012

Slide 7

A Few Words About Types

• To the hardware, “it’s all ones and zeros”; types say how we want to interpret

them (integers? characters?), define what kinds of things we can do with

particular chunks of data.

• Should be reasonably familiar to Scala programmers but may be new to

Python programmers. Both languages are more willing to guess your intent

than C is. Book lists C’s built-in types. Some will work in gcc only with the

-std=c99 option.

Slide 8

Functions

• C programs are organized in terms of functions — a somewhat more primitive

version of methods as found in object-oriented programming languages such

as Python and Scala. As in other programming languages, C functions are a

little like mathematical functions, except that evaluating them can have “side

effects”.

(For example, evaluating the library function printf has the side effect of

writing some text to standard output (by default, displaying it in the terminal

window).)

• Unlike in some other languages, C functions have to be declared (or defined)

before being referenced. Declaration includes name, return type, and formal

parameters. For library functions, declaration is usually supplied via a

#include preprocessor directive.



CSCI 1120 January 30, 2012

Slide 9

Functions, Continued

• A complete C program must contain a function called main. It can be

declared to take zero parameters, or two. Which to use? Depends on whether

it needs access to command-line arguments. It should return an integer.

• When you execute a compiled/linked program, the operating system calls

main, optionally passing it any command-line arguments. The program ends

when this function does; its return value can be used to indicate whether the

program succeeded (e.g., in shell scripts).

• (Now look again at our “hello world” program. More of it should make sense.)

Slide 10

Sidebar — Compiler Options

• Earlier I showed the simplest way to use gcc to compile a program. But

there are many variations — options. Specify on the command line, ahead of

name of input file.

• Some of the most useful:

– -Wall and -pedantic warn you about dangerous and non-standard

things. -Wall highly recommended.

– -std=c99 allows you to use full C99.

– -o allows you to name the output file (default a.out).

• Automate with make (more later).



CSCI 1120 January 30, 2012

Slide 11

Variables in C

• To do anything interesting in a program, we need some place to store input

and intermediate values — “variables”.

• In C, variables must be declared, with a name and a type. In C89, all

declarations must come before any code.

• Variable names follow rules for identifiers — letters, numbers, and

underscores only, must start with letter or underscore, preferably letter.

Case-sensitive.

• (To be continued . . . )

Slide 12

Minute Essay

• Was anything today particularly unclear? Any other questions?


