
CSCI 1120 February 13, 2012

Slide 1

Administrivia

• None.

Slide 2

Minute Essay From Last Lecture

• Why is the printf so different from println?

Partly I’d say it’s more low-level — language does less for you — but also it

gives more control. Notice that Scala has a printf!

• How do data types in C compare to those in Scala?

Simple ones are very similar except that in C there’s some flexibility about

precision (more in another slide).



CSCI 1120 February 13, 2012

Slide 3

Types in C

• Integer types include int, short, long. (All can be declared

unsigned too.) Unlike in some language (such as Java and Scala), sizes

not strictly defined — e.g., a Java int is exactly 32 bits, but a C int may be

more. (Why? to allow implementations to use whatever is most efficient.)

• Floating-point types include float, double. Binary equivalent of

scientific notation (with exponent and mantissa). Minimum size for double

is larger than for float so allows more significant figures, larger range.

• More about other types later.

Slide 4

Variables — Review/Recap

• In order to do anything useful we usually (though not always!) need some

variables. In C, variables must be declared before being used. (Contrast with

Python.) Declaration specifies name and type. (Contrast with Scala.)

• Once you have variables, you can assign values to them, using expressions

that range from simple constants to complex math-like formulas involving

constants and/or other variables.



CSCI 1120 February 13, 2012

Slide 5

Expressions in C

• C (like many other programming languages) has a notion of an expression.

Simple examples (assuming we’ve declared variables x and y):

– 5

– x

– y + 5

– (x + y) / 2

• Every expression has a value, and computing this value is called evaluating

the expression. Evaluate the above expressions, assuming x has value 10

and y has value 20 . . .

Slide 6

Expressions in C, Continued

• Sometimes evaluating an expression also produces changes to variables in

the expression or other variables; these are called side effects. Examples:

– x = 10

– printf("hello, world\n)

(Yes, really! Usually we don’t care about much about the values of these

expressions, just their side effects.)

• Many, many operators of different kinds. For now we’ll look only at the ones

for arithmetic.



CSCI 1120 February 13, 2012

Slide 7

Arithmetic Expressions — Operators

• Usual arithmetic operators +, -, * (multiplication), / (division). (+ and - can

be unary too.)

Notice that division, applied to integers, discards any remainder. This is so

the result will be an integer too, and can even be useful. What if you want a

fraction? Later.

• Also % operator for getting remainder; e.g., x % 2 is 0 if x is even, 1 if it’s

odd.

• Other useful arithmetic operators include pre/post increment/decrement, bit

shifts.

• Expressions can be quite complex. How they’re evaluated depends on rules

of precedence and associativity. My advice — when in doubt, use

parentheses! Example: (x + y) / 2 versus x + y / 2.

Slide 8

Expressions — “Caveat Programmer”

• C standard is somewhat imprecise about details of expression evaluation —

e.g., in evaluating

f() + g()

two functions could be called in either order. (Why? To allow greater flexibility

for implementers, possible allow for more-efficient programs.)

• C syntax allows programmers to write statements/expressions in which a

variable’s value is changed more than once, e.g.,

i = (i++) + (i--);

Syntactically legal, but standard says that such expressions invoke “undefined

behavior”. Best to avoid that!



CSCI 1120 February 13, 2012

Slide 9

Statements in C

• C programs are made up of statements (usually collected inside functions).

• Statements come in several types:

– Null (;).

– Expression (expression ;).

– Return (return expression ;).

– Compound (more later).

Slide 10

Output

• The “hello world” used printf to print some text. printf can do a lot

more.

• For example, we can use it to print integers, e.g.,

printf("the value of x is %d\n", x);



CSCI 1120 February 13, 2012

Slide 11

Preprocessor Directives — A Bit More

• Examples so far have started with #include directive to tell compiler

where to find information about I/O library functions. (Roughly — “include”,

i.e., copy, information from header file-or-equivalent.) This is input to the

“preprocessor”.

• Another useful directive is #define, to give meaningful names to

constants, e.g.,

#define IMPRECISE_PI 3.14159

Slide 12

A Few Words About Syntax

• Python programmers should note that in C, unlike in Python, indentation is not

generally syntactically significant. (But adopting a consistent style makes your

code more readable to humans.)

• Scala programmers should note that in C, unlike in Scala, the compiler will not

add semicolons to the ends of statements or guess about types.



CSCI 1120 February 13, 2012

Slide 13

Simple Output, Revisited

• Simple/typical way to produce output (to “standard output” — terminal for

now) is with library function printf.

• Parameters are “format string”, which may include “conversion specifications”,

followed by zero or more expressions, one for each conversion specification.

Slide 14

Simple Input

• Simple way to get integer/float input (from “standard input” — keyboard for

now) is with library function scanf. For now we will look only at simple

forms:

scanf("%d", &variable_name);

scanf("%d %d", &var1, &var2);

etc. Parameters similar to printf, except for that ampersand. (It generates

a pointer. More about that later!)

• Considered as an expression, call to scanf has a value, namely the number

of variables successfully read. (So you can check it to make sure valid input

was entered.)



CSCI 1120 February 13, 2012

Slide 15

Minute Essay

• None — sign in.


