
CSCI 1120 February 27, 2012

Slide 1

Administrivia

• Reminder: Homework 1 due today (11:59pm). Meant to be straightforward

practice involving only assignments, conditionals, and simple I/O.

• Homework 2 on the Web. Due next week. Meant to also be fairly

straightforward practice using loops and arrays.

• (Review minute essay from last time.)

Slide 2

Review(?): Input/Output Redirection

• Normally programs run from the command line write output to the terminal

window. Can instead “redirect” output to a file:

> outfile (overwrite)

>> outfile (append)

• Normally programs get input from the keyboard, but can also make them get

input from a file with <.

(How could this help you in checking your programs?)

• Finally, can use “pipes” (vertical-bar |) to have output from one program

become input to another. Example:

ruptime | grep xena (show status of HAS 340 machines)

Very powerful idea! this and some other ways of connecting simple programs

makes for a very powerful and flexible environment.



CSCI 1120 February 27, 2012

Slide 3

Conditional Execution — One More Thing

• Last time we looked at if/else syntax.

• One other conditional-execution construct you may encounter — switch.

Basically a short form of if/elseif/else. Somewhat like match in Scala but

nowhere near as powerful. Example:

char c; /* code to set value omitted */

switch (c) {

case ’a’: printf("first case\n"); break;

case ’b’: printf("second case\n"); break;

default: printf("default\n");

}

Slide 4

Repetition — Loops

• C, like most/many procedural languages, offers several syntaxes for

repetition. (One of them, recursion, we’ll talk about later.)

• All have some way of expressing common elements (explicitly, rather than the

“do for all” syntax allowed by some languages):

– Initializer (as its name suggests).

– Condition (determines whether repetition continues).

– Body (code to repeat).

– Iterator (something that moves on to next iteration).



CSCI 1120 February 27, 2012

Slide 5

while Loops

• Probably the simplest kind of loop. You decide where to put initializer and

iterator. Test happens at start of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

while (n <= 10) { /* condition */

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

}

• Various short ways to write n = n + 1:

n += 1;

n++;

++n;

What do you think happens if we leave out this line?

Slide 6

for Loops

• Probably the most common type of loop. Particularly useful for anything

involving counting, but can be more general. Syntax has explicit places for

initializer, condition, iterator (so it’s less likely you’ll forget one of them).

• Example — print numbers from 1 to 10:

for (int n = 1; n <= 10; ++n) {

printf("%d\n", n);

}

• Initializer happens once (at start); condition is evaluated at the start of each

iteration; iterator is executed at the end of each iteration. (Note that C89

standard required that n be declared outside the loop.)



CSCI 1120 February 27, 2012

Slide 7

do while Loops

• Looks very similar to while loop, but test happens at end of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

do {

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

} while (n <= 10); /* condition */

Slide 8

Loops — Example

• Simple example — loop to read integers and compute their sum. (Don’t we

need a place to store them all? No!)

• (Variant of example in book.)



CSCI 1120 February 27, 2012

Slide 9

Arrays

• Previously we’ve talked about how to reserve space for a single

number/character and give it a name.

• Arrays extend that by allowing you to reserve space for many

numbers/characters and give a common name to all. You can then reference

an individual element via its index (similar to subscripts in math).

Slide 10

Arrays in C

• Declaring an array — give its type, name, and how many elements.

Examples:

int nums[10];

double stuff[N];

(The second example assumes N is declared and given a value previously. In

C89, it had to be a constant. In C99, it can be a variable.)

• Referencing an array element — give the array name and an index (ranging

from 0 to array size minus 1). Index can be a constant or a variable. Then use

as you would any other variable. Examples:

nums[0] = 20;

printf("%d\n", nums[0]);

(Notice that the second example passes an array element to a function. AOK!)



CSCI 1120 February 27, 2012

Slide 11

Arrays in C, Continued

• We said if you declare an array to be of size n you can reference elements

with indices 0 through n − 1. What happens if you reference element -1? n?

2n?

• Well, the compiler won’t complain. At runtime, the computer will happily

compute a memory address based on the starting point of the array and the

index. If the index is “in range”, all is well. If it’s not (i.e., it’s “out of bounds) . . .

Slide 12

Arrays in C, Continued

• (What happens if you try to access an array with an index that’s out of

bounds?)

• “Results are unpredictable.” Maybe it’s outside the memory your program can

access, in which case you may get the infamous “Segmentation fault” error

message (or with newer compilers you may get a screenful of equally cryptic

messages).

Almost worse is if it’s not — then what’s at the computed memory address

might be some other variable in your program, which will then be

accessed/changed. This is the essence of the buffer overflows you hear

mentioned in connection with security problems.

• What to do? Be careful. (Probably worth noting here that more-recent

languages are apt to check for such errors.)



CSCI 1120 February 27, 2012

Slide 13

Arrays — Example

• Back story: Conventional wisdom says that many library functions for

generating sequences of random numbers aren’t very random in their

least-significant bits, so mapping their output to a small range using the mod

operator isn’t a good idea.

• We could write a short program to check, in a crude way, whether that’s true,

or at least how well the results are distributed over the range: Prompt for how

many “random” numbers to generate and for a divisor, then generate the

sequence, divide each by the divisor, and count how many have remainder 0,

remainder 1, etc.

Slide 14

Minute Essay

• What did you find interesting about Homework 1? What did you find difficult?

(Optional question — okay to just sign in.)


