
CSCI 1120 March 7, 2012

Slide 1

Administrivia

• Reminder: Homework 2 due today.

• Homework 3 on the Web. Due Monday after break. (Accepted without penalty

through Tuesday at 11:59pm.)

• I will put a sample solution for Homework 1 on the Web soon (since I seem to

be behind with grading, again).

Slide 2

Minute Essay From Last Lecture

• (What was interesting/difficult about Homework 1?)

• Okay, it wasn’t very interesting, but you have to start somewhere with a new

language? and yes getting used to a new syntax can be troublesome.

• One person asked about initial values for variables. There are some

situations in which C automatically assigns an initial value, but local variables

in a function isn’t one of them.



CSCI 1120 March 7, 2012

Slide 3

Loops in C — Recap

• C has several constructs for repeating execution of a statement or block of

statements — while, do while, and for loops. The first two will likely

be familiar to Python and Scala programmers; the third, not so much.

• What C does not have, and Python and Scala do, is nice constructs for

iterating through collections — in keeping with its being lower-level, maybe.

Slide 4

Arrays in C — Recap

• Again in contrast to higher-level languages such as Python and Scala, C has

only one construct for representing collections of similar data, namely the

array.

• In some ways C’s arrays are fairly similar to arrays in Python and Scala —

basic idea of a collection of elements of the same type, fixed size, indexed

starting at 0.

• A key difference is that with C’s arrays the underlying implementation shows

through more clearly — what you get is a sequence in memory of storage

cells, all of the same size, with little in the way of safety checks that would

keep you within the allowed bounds.



CSCI 1120 March 7, 2012

Slide 5

Functions in C

• Functions in C are conceptually much like functions in other procedural

programming languages. (Functions in object-oriented languages are similar

but have some extra capabilities.)

I.e., a function has a name, parameters, a return type, and a body (some

code).

• One difference between C and higher-level languages: You aren’t supposed

to use a function before you tell the compiler about it, either by giving its full

definition or by giving a declaration that specifies its name, parameters, and

return type. The function body can be later in the same file or in some other

file.

Slide 6

Parameter Passing in C

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as we did in the sort

program). Why “apparent exception”? because really what’s being passed to

the function is not the array but a pointer! so the copying produces a second

pointer to the same actual data. (More about pointers soon.)



CSCI 1120 March 7, 2012

Slide 7

Functions, Local Variables, and Recursion

• Functions in C can contain local variables. Every time you call the function,

you get a fresh copy of the variables.

• So yes, recursive functions work the way you (probably?) think they should.

Slide 8

Library Functions in C

• C does include a library of standard functions, though it’s not as extensive as

that of some languages.

• At least on UNIX-like systems, for each library function there should be a

man page that tells you about it, including information about #include

files you need and link-time options (e.g., -lm for sqrt). For now, be

advised that asterisks in types denote pointers, which we will talk about soon.



CSCI 1120 March 7, 2012

Slide 9

Functions in C — Examples

• Examples as time permits (recursive Fibonacci function, partial array-sorting

program).

Slide 10

Minute Essay

• What was interesting about Homework 2? What was difficult?


