
CSCI 1120 March 19, 2012

Slide 1

Administrivia

• Reminder: Homework 3 due tomorrow 11:59pm.

Slide 2

Pointers in C

• C, in contrast to Python and Scala, makes an explicit distinction between

things and pointers-to-things. In Python and Scala (as I understand it!)

variables are pointers/references to objects, and you deal with them fairly

abstractly. In C, you can have variables that are “things” (integers,

floating-point numbers, etc.) and variables that are “pointers to things” (in

some ways more like variables in Python and Scala, but very low-level and

with fewer safety checks).

• That is, in C, pointers are basically just memory addresses, though declared

to point to variables (or data) of a particular type. Example:

int * pointer to int;

double * pointer to double;

CSCI 1120 March 19, 2012

Slide 3

Pointers in C — Operators

• & gets a pointer to something in memory. So for example you could write

int x;

int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by

writing

*x ptr = 10;

• You can also perform arithmetic on pointers (e.g., ++x ptr) — something

not allowed in languages more concerned with safety.

Slide 4

Parameter Passing in C — Review

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as we did in the sort

program). Why “apparent exception”? because really what’s being passed to

the function is not the array but a pointer! so the copying produces a second

pointer to the same actual data.

• This is at least simple and consistent, but has annoying limitations . . .

CSCI 1120 March 19, 2012

Slide 5

Pass By Reference (Sort Of)

• A significant potential limitation on functions is that a function can only return

a single value. Pointers provide a way to get around this restriction: By

passing a pointer to something, rather than the thing itself, we can in effect

have a function return multiple things.

• To make this work, typically you declare the function’s parameters as pointers,

and pass addresses of variables rather than variables.

• (The “sort of” of the title means that this isn’t true pass by reference, as it

exists in some other languages such as C++, but it can be used to more or

less get the same effect.)

Slide 6

Pointers — Examples

• (Simple examples.)

• Calls to scanf should now make sense — the function is supposed to store

values into variable(s), and with pass-by-value we can’t do that unless we

pass a pointer.

CSCI 1120 March 19, 2012

Slide 7

Pointers Versus Arrays

• In C, pointers and arrays are in some sense(s) equivalent — not identical, but

in many contexts interchangeable.

• This is reflected in the man pages for many functions (e.g., printf —

strings are arrays of characters, as we will discuss next time). It also means

that when you pass an array to a function, what you’re actually passing is a

pointer — so the array is not copied.

Slide 8

Strings in C

• Many languages have nice ways of working with text (character strings). What

C provides is — no surprise — somewhat primitive.

• In C, strings are arrays of chars, with the convention that the actual text of

interest is followed by a null character (8-bit zero, represented in code as

’\0’.

CSCI 1120 March 19, 2012

Slide 9

Working with Strings in C

• You can operate on individual characters however you see fit (accessing them

as elements of the array). Or you can access them using pointers to char.

(Recall that arrays and pointers are interchangeable in most contexts.)

• There are some useful standard-library functions for working with characters;

man ctype.h will list them.

• There are also standard library functions for some common operations (e.g.,

strcmp to compare two strings — returns -1/0/1 depending on which string

is lexicographically first). Simplest way to find them may be man -k

string and ignore everything but the last few screenfuls.

• scanf and printf use %s to read/write strings. (Use with caution —

next slide.)

Slide 10

Strings in C — Pitfalls

• Most functions assume that strings are properly terminated. (What do you

think happens if they’re not?)

• Many functions that store into a string have no way to check that it’s big

enough.

So getting text input from standard input safely is surprisingly difficult!

scanf can be made to check, but not (in my opinion) nicely, and it stops on

whitespace anyway. gets gets a full line, but notice what gcc says when

you use it.

CSCI 1120 March 19, 2012

Slide 11

Minute Essay

• None — sign in.

