CSCI 1120 April 2, 2012

Administrivia

e Homework 4 on the Web; due next Monday.

Slide 1
Strings in C — Recap
o Many languages have nice ways of working with text (character strings). What
C provides is — no surprise — somewhat more primitive: In C, strings are
arrays of char s, with the convention that the actual text of interest is
followed by a null character (8-bit zero, represented in code as* \0’ .
Slide 2 e The standard library does have some useful functions for working with strings

and characters.

CSCI 1120 April 2, 2012

Another Way to Get Input — Command-Line Arguments

o Now that we know about arrays, pointers, and text strings, we can talk about
command-line arguments. What are they? text that comes after the name of
the program on the command line (e.g., when you write gcc - Wl |
mypr ogr am c, there are are two command-line arguments), possibly

modified by the shell (e.g., for filename wildcards).
Slide 3

o Most programming languages provide a way to access this text, often via

some sort of argument to the main function/method.

Command-Line Arguments in C

e In C, command-line arguments are passed to MAI N as an array of text
strings. So if you define mai n as
int main(int argc, char * argv[]) {.... }
ar gc is the number of arguments, plus one, and ar gV is an array of strings
Slide 4 containing the arguments.

(“Plus one™? yes, ar gv[0] is something system-dependent, often the path

for the program’s executable.)

e What if you want to get numeric input? you must convert string pointed to by
argv[i] tothe type you want, e.g., with at 0i orstrtol .

CSCI 1120

Slide 5

Slide 6

April 2, 2012

-

e Be aware that most UNIX shells do some preliminary parsing and conversion

e [f you don’t want that — enclose in quotation marks or use escape character

Command-Line Arguments and UNIX Shells

of what you type — e.g., splitting it up into “words”, expanding wildcards, etc.,

etc.

(backslash).

Simple Examples

e Program to echo command-line arguments and do some simple things with

them.

CSCI 1120 April 2, 2012

I/0 in C — Review

e get char and put char provide simple character-at-a-time 1/0 to
standard input/output.

e printf and scanf provide more sophisticated functionality, but again for
standard input/output.

Slide 7 e |/O redirection provides one way to work with files. Is there something more
general? Yes....
Sidebar — Input/Output Redirection in UNIX/Linux
e |n programming classes | talk about “reading from standard input” rather than
“reading from the keyboard”, and “writing to standard output” (or “writing to
standard error”) rather than “writing to the screen”.
o What'’s the difference?
Slide 8

CSCI 1120 April 2, 2012

I/0 Redirection, Continued

e st di n (standard input) can come from keyboard, file, or from another

program or shell script.

e st dout and st der r (standard output, error) can go to terminal or file

(overwrite or append), separately or together.

Slide 9
I/O Redirection, Continued
e For example — to redirect output of | S to | S. out , type
I's >Is.out
(Overwrites | S. out . To append, replace > with >>)
To also redirect any error messages, append 2>&1.
Slide 10

e To redirect input, use <i nfil e.

CSCI 1120 April 2, 2012

Streams

e C’s notion of file I/O is based on the notion of a stream — a sequence of
characters/bytes. Streams can be text (characters arranged into lines
separated by something platform-dependent) or binary (any kind of bytes).
UNIX/Linux doesn’t make a distinction, but some other operating systems do.

Slide 11 e An input stream is a sequence of characters/bytes coming into your program

(think of characters being typed at the console).

e An output stream is a sequence of characters/bytes produced by your
program (think of characters being printed to the screen, including special

characters such as the one for going to the next line).

Streams in C

e In C, streams are represented by the type FI LE * —i.e., a pointer to a
FI LE, which is something defined in st di 0. h.

e A few streams are predefined — St di n for standard input, St dout for
standard output, St der r) for standard error (also output, but distinct from
Slide 12 st dout so you can separate normal output from error messages if you

want to).

e To create other streams ...

CSCI 1120 April 2, 2012

Creating Streams in C

e To create a stream connected with a file —f open.

e Parameters, from its MAN page:
— First parameter is the name of the file, as a C string.

— Second parameter is how we want to access the file — read or write,

Slide 13 overwrite or append — plus a b for binary files, also a string.

— Return value is a FI LE * — a somewhat mysterious thing, but one we
can pass to other functions. If NULL, the open did not succeed. (Can you
think of reasons this might happen?)

Working With Streams in C

e To read from an input stream — f scanf , almost identical to scanf . To
write to an output stream — f pri nt f , almost identical to pri nt f .

f get ¢ and f put ¢ provide single-character input and output.

e When done with a stream, f ¢l 0Se to tidy up. (Particularly important for

Slide 14 output files, which otherwise may not be completely written out.)

CSCI 1120 April 2, 2012

. .)
Reading Text Strings

e Getting text-string input is surprisingly tricky. scanf (or f scanf) seems
like an obvious choice, but:

— it can’t read a string that includes blanks, and

— it has no nice way to limit the number of characters read to the size of the
Slide 15 array being read into.

Getting a whole line is probably better. get () is an obvious/simple choice
for reading from standard input, but it also has no way to limit how much is
read. f get s()) is better. (Look at its M&N page.)

(Also notice put s() — simple way to write out a text string.)

e Can you think of situations in which I/O redirection would be useful?

Slide 16

CSCI 1120 April 2, 2012

e There are several, possibly many. One is for program testing — you put the
input in a file, run the program with input redirected to come from that file, and
capture the output. If you later change the program, you can easily determine
whether it still produces the same results, by capturing output again and

comparing (e.g., with di f f) to the old output.
Slide 17

