
CSCI 1120 April 9, 2012

Slide 1

Administrivia

• Reminder: Homework 4 due today.

• Sample solutions for Homeworks 1 through 3 online.

Slide 2

Minute Essay From Last Lecture

• (Question was about I/O redirection.)

• Many answers seemed to be more about working with files in general than

with I/O redirection. In my thinking redirection is more about being able to

easily decide at runtime whether program input/output should be interactive or

from/to files or other programs.



CSCI 1120 April 9, 2012

Slide 3

“It’s All Ones and Zeros”

• At the hardware level, all data is represented in binary form — ones and

zeros. (Why? hardware for that is simpler to build.)

• How then do we represent various kinds of data? First a short review of

binary numbers . . .

Slide 4

Binary Numbers

• Humans usually use the decimal (base 10) number system, but other

(positive integer) bases work too. (Well, maybe not base 1.)

• In base 10, there are ten possible digits, with values 0 through 9.

In base 2, there are 2 possible digits (bits), with values 0 and 1.

• In base 10, 1010 means what? What about in base 2?



CSCI 1120 April 9, 2012

Slide 5

Converting Between Bases

• Converting from another base to base 10 is easy if tedious (just use

definition).

• Converting from base 10 to another base? Two algorithms for that . . .

Slide 6

Decimal to Binary, Take 1

• One way is to first find the highest power of 2 smaller than or equal to the

number, write that down, subtract it from the number, and continue.

• In somewhat sloppy pseudocode (letting n be the number we want to

convert):

while (n > 0)

find largest p such that 2p ≤ n

write a 1 in the p-th output position

subtract 2p from n

end while



CSCI 1120 April 9, 2012

Slide 7

Decimal to Binary, Take 2

• Another way produces the answer from right to left rather than left to right,

repeatedly dividing by 2 (again n will be the number we want to convert):

while (n > 0)

divide n by 2, giving quotient q and remainder r

write down r

set n equal to q

end while

(Again, this is a bit sloppy.)

Slide 8

Octal and Hexadecimal Numbers

• Binary numbers are convenient for computer hardware, but cumbersome for

humans to write. Octal (base 8) and hexadecimal (base 16) are more

compact, and conversions between these bases and binary are

straightforward.

• To convert binary to octal, group bits in groups of three (right to left), and

convert each group to one octal digit using the same rules as for converting to

decimal (base 10).

• Converting binary to hexadecimal is similar, but with groups of four bits. What

to do with values greater than 9? represent using letters A through F (upper

or lower case).



CSCI 1120 April 9, 2012

Slide 9

Computer Representation of Integers

• So now you can probably guess how non-negative integers can be

represented using ones and zeros — number in binary. Fixed size (so we can

only represent a limited range).

• How about negative numbers, though? No way to directly represent

plus/minus. Various schemes are possible. The one most used now is two’s

complement : Motivated by the idea that it would be nice if the way we add

numbers doesn’t depend on their sign. So first let’s talk about addition . . .

Slide 10

Machine Arithmetic — Integer Addition and Negative
Numbers

• Adding binary numbers works just like adding base-10 numbers — work from

right to left, carry as needed. (Example.)

• Two’s complement representation of negative numbers is chosen so that we

easily get 0 when we add −n and n.

Computing −n is easy with a simple trick: If m is the number of bits we’re

using, addition is in effect modulo 2m. So −n is equivalent to 2m − n, which

we can compute as ((2m − 1) − n) + 1).

• So now we can easily (?) do subtraction too — to compute a − b, compute

−b and add.



CSCI 1120 April 9, 2012

Slide 11

Binary Fractions

• We talked about integer binary numbers. How would we represent fractions?

• With base-10 numbers, the digits after the decimal point represent negative

powers of 10. Same idea works in binary.

Slide 12

Computer Representation of Real Numbers

• How are non-integer numbers represented? usually as floating point.

• Idea is similar to scientific notation — represent number as a binary fraction

multiplied by a power of 2:

x = (−1)sign × (1 + frac) × 2bias+exp

and then store sign frac, and exp. Sign is one bit; number of bits for the

other two fields varies — e.g., for usual single-precision, 8 bits for exponent

and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive

and negative exponents.

• Current most common format — “IEEE 754”.



CSCI 1120 April 9, 2012

Slide 13

Numbers in Math Versus Numbers in Programming

• The integers and real numbers of the idealized world of math have some

properties not completely shared by their computer representations.

• Math integers can be any size; computer integers can’t.

• Math real numbers can be any size and precision; floating-point numbers

can’t. Also, some quantities that can be represented easily in decimal can’t be

represented in binary.

• Math operations on integers and reals have properties such as associativity

that don’t necessarily hold for the computer representations. (Yes, really!)

Slide 14

Computer Representation of Text

• We talked already about how “text strings” are, in C, arrays of “characters”.

How are characters represented? Various encodings possible.

• One common one is ASCII — strictly speaking, 7 bits, so fits nicely in smallest

addressable unit of storage on most current systems (8-bit byte). This is C’s

char type.

• Another one is Unicode — originally 16 bits (Java’s char type), now

somewhat more complicated.

• Either encoding can be considered as “small integers”.



CSCI 1120 April 9, 2012

Slide 15

A Little About the C Preprocessor

• C logically divides the process of producing an executable into distinct

phases. First phase is “preprocessing”.

• Preprocessing makes use of “preprocessor directives”, which start with a #.

• Examples you’ve seen — #include to include information about library

functions, #define to define constants.

• Other functionality includes macros and “conditional compilation”. More in

chapter 14, some beyond the scope of this course. Focus is on relatively

simple text manipulation.

Slide 16

A Little More About gcc

• Many, many compiler options for gcc. One of the most useful is -Wall.

• To automate using them every time, you can use the UNIX utility make . . .



CSCI 1120 April 9, 2012

Slide 17

A Little About make

• Motivation: Most programming languages allow you to compile programs in

pieces (“separate compilation”). This makes sense when working on a large

program — when you change something, just recompile parts that are

affected.

• Idea behind make — have computer figure out what needs to be recompiled

and issue right commands to recompile it.

Slide 18

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example on sample programs page.

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.



CSCI 1120 April 9, 2012

Slide 19

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99

• Or you could use

OPT = -O

CFLAGS = -Wall -pedantic -std=c99 $(OPT)

and then optionally override the -O by saying, e.g., make OPT=-g foo.

Slide 20

Minute Essay

• What’s the (base 10) value of the largest unsigned number you can represent

with 4 bits? (E.g., the largest number you can represent with 2 bits is 112, or

310.)



CSCI 1120 April 9, 2012

Slide 21

Minute Essay Answer

• 15 (11112).


