
CSCI 1120 (Low-Level Computing), Fall 2013

Homework 6

Credit: 20 points.

1 Reading

Be sure you have read the assigned readings for classes through 12/04.

2 Programming Problems

Do the following programming problems. You will end up with at least one code file per prob-
lem. Submit your program source (and any other needed files) by sending mail to bmassing@cs.

trinity.edu, with each file as an attachment. Please use a subject line that mentions the course
number and the assignment (e.g., “csci 1120 homework 6”). You can develop your programs on
any system that provides the needed functionality, but I will test them on one of the department’s
Linux machines, so you should probably make sure they work in that environment before turning
them in.

1. (20 points) Your mission for this assignment is to complete a partial implementation in C
of a binary search tree (a.k.a. sorted binary tree) of ints. (I’m hoping that all of you know
about this data structure from CS2. If you don’t — the Wikipedia article1 is a reasonable
description (but I recommend that you not read the example code until/unless you try to
write your own).

This partial implementation consists of a number of files:

• Function declarations for tree: int-bst.h2.

• Starter file for function definitions: int-bst.c3.

• Test program and supporting files: test-int-bst.c4, test-helper.c5, test-helper.h6.

• Makefile for compiling (comments in the file tell you how to use it): Makefile.bst7.

Your job is to modify the file int-bst.c so it includes function definitions for all the functions
declared in int-bst.h. (You may want to add additional “helper” functions, but if so they
should probably go only in int-bst.c.) Notice that the function that removes a single
element of the tree (int bst remove) is optional — you can provide an “implementation”

1http://en.wikipedia.org/wiki/Binary_search_tree
2http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2013fall/Homeworks/HW06/Problems/int-bst.h
3http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2013fall/Homeworks/HW06/Problems/int-bst.c
4http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2013fall/Homeworks/HW06/Problems/

test-int-bst.c
5http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2013fall/Homeworks/HW06/Problems/

test-helper.c
6http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2013fall/Homeworks/HW06/Problems/

test-helper.h
7http://www.cs.trinity.edu/~bmassing/Classes/CS1120_2013fall/Homeworks/HW06/Problems/Makefile.

bst

1

CSCI 1120 Homework 6 Fall 2013

that just prints an error message, or for extra credit you can actually implement this operation.
You should not need to modify any other files, unless you want to add additional tests to
test-int-bst.c.

Sample output of the test program:

inserting 40 into tree []

result [40]

inserting 30 into tree [40]

result [30 40]

inserting 50 into tree [30 40]

result [30 40 50]

inserting 20 into tree [30 40 50]

result [20 30 40 50]

inserting 60 into tree [20 30 40 50]

result [20 30 40 50 60]

inserting 16 into tree [20 30 40 50 60]

result [16 20 30 40 50 60]

inserting 14 into tree [16 20 30 40 50 60]

result [14 16 20 30 40 50 60]

inserting 18 into tree [14 16 20 30 40 50 60]

result [14 16 18 20 30 40 50 60]

inserting 24 into tree [14 16 18 20 30 40 50 60]

result [14 16 18 20 24 30 40 50 60]

inserting 56 into tree [14 16 18 20 24 30 40 50 60]

result [14 16 18 20 24 30 40 50 56 60]

inserting 64 into tree [14 16 18 20 24 30 40 50 56 60]

result [14 16 18 20 24 30 40 50 56 60 64]

inserting 30 into tree [14 16 18 20 24 30 40 50 56 60 64]

result [14 16 18 20 24 30 40 50 56 60 64]

inserting 50 into tree [14 16 18 20 24 30 40 50 56 60 64]

result [14 16 18 20 24 30 40 50 56 60 64]

test data in order [14 16 18 20 24 30 30 40 50 50 56 60 64]

40

30

20

16

14

.

.

18

.

.

24

.

.

.

50

.

2

CSCI 1120 Homework 6 Fall 2013

60

56

.

.

64

.

.

finding 0 in tree [14 16 18 20 24 30 40 50 56 60 64]

result false

finding 100 in tree [14 16 18 20 24 30 40 50 56 60 64]

result false

finding 10 in tree [14 16 18 20 24 30 40 50 56 60 64]

result false

finding 40 in tree [14 16 18 20 24 30 40 50 56 60 64]

result true

finding 14 in tree [14 16 18 20 24 30 40 50 56 60 64]

result true

finding 64 in tree [14 16 18 20 24 30 40 50 56 60 64]

result true

removing 0 from tree [14 16 18 20 24 30 40 50 56 60 64]

result [14 16 18 20 24 30 40 50 56 60 64]

removing 16 from tree [14 16 18 20 24 30 40 50 56 60 64]

result [14 18 20 24 30 40 50 56 60 64]

removing 60 from tree [14 18 20 24 30 40 50 56 60 64]

result [14 18 20 24 30 40 50 56 64]

removing 30 from tree [14 18 20 24 30 40 50 56 64]

result [14 18 20 24 40 50 56 64]

removing 50 from tree [14 18 20 24 40 50 56 64]

result [14 18 20 24 40 56 64]

40

20

14

.

18

.

.

24

.

.

64

56

.

.

.

inserting 0 into tree [14 18 20 24 40 56 64]

result [0 14 18 20 24 40 56 64]

inserting 100 into tree [0 14 18 20 24 40 56 64]

result [0 14 18 20 24 40 56 64 100]

3

CSCI 1120 Homework 6 Fall 2013

inserting 0 into tree [0 14 18 20 24 40 56 64 100]

result [0 14 18 20 24 40 56 64 100]

inserting 100 into tree [0 14 18 20 24 40 56 64 100]

result [0 14 18 20 24 40 56 64 100]

after removing all elements []

Hint: You may find it helpful to look more closely at the sorted-list example briefly shown
in class and available on the course “sample programs” page. It’s up to you whether to use
recursion or iteration or both, but I advise that recursion will probably be much easier for
the two functions that print the tree.

4

