
CSCI 1120 November 13, 2013

Slide 1

Administrivia

• Next homework will be on the Web soon (tomorrow)? Due in about a week.

• Grades for Homework 1 sent by e-mail before class. More coming soon, I

hope.

• A request: If you’re having trouble with homework or something else about

the course. please let me know, by e-mail if nothing else. There might be

something I can help with by e-mail, and if not at least I know we need to

meet!

Slide 2

A Little About the C Preprocessor

• C logically divides the process of producing an executable into distinct

phases. First phase is “preprocessing”.

• Preprocessing makes use of “preprocessor directives”, which start with a #.

• Examples you’ve seen — #include to include information about library

functions, #define to define constants.

• Other functionality includes macros and “conditional compilation”. More in

chapter 14, some beyond the scope of this course. Focus is on relatively

simple text manipulation.



CSCI 1120 November 13, 2013

Slide 3

Dynamic Memory and C

• With the C89 standard, you had to decide when you compiled the program

how big to make things, particularly arrays — a significant limitation.

• Variable-length arrays in C99 standard help with that, but don’t solve all

related problems:

In many implementations, space is obtained for them on “the stack”, an area

of memory that’s limited in size.

You can return a pointer from a function, but not to one of the function’s local

variables (because these local variables cease to exist when you return from

the function).

Slide 4

Dynamic Memory and C, Continued

• “Dynamic allocation” of memory gets around these limitations — allows us to

request memory of whatever size we want (well, up to limitations on total

memory the program can use) and have it stick around until we give it back to

the system.

(The trick here is that most implementations differentiate between two areas

of memory, a “stack” used for local variables, and a “heap” used for dynamic

memory allocation. Usually the former is more limited in size.)

• To request memory, use malloc. To return it to the system, use free.

(For short simple programs you can skip this, but not good practice, since in

“real” programs you may eventually run out of memory.)

• Python and Scala hide most of this from you — allocating space for objects is

automatic/hidden, and space is reclaimed by automatic garbage collection.



CSCI 1120 November 13, 2013

Slide 5

Dynamic Memory and C, Continued

• Simple examples:

int * nums = malloc(sizeof(int) * 100);

char * some text = malloc(sizeof(char) *
20);

free(nums);

though it’s better style/practice to write

int * nums = malloc(sizeof(*nums) * 100);

char * some text = malloc(sizeof(*some text)

* 20);

free(nums);

• Some books/resources recommend “casting” value returned by malloc.

Other references recommend the opposite! But you should check the value —

if NULL, system was not able to get that much memory.

Slide 6

• (Example — improved sort program.)



CSCI 1120 November 13, 2013

Slide 7

Function Pointers

• You know from more-abstract languages that there are situations in which it’s

useful to have method parameters that are essentially code. Some languages

make that easy (functions are “first-class objects”) and others don’t, but

almost all of them provide some way to do it, since it’s so useful — e.g.,

providing a “less-than” function for a generic sort.

• In C, you do this by explicitly passing a pointer to the function.

Slide 8

Function Pointers in C

• The type of a function pointer includes information about the number and

types of parameters, plus the return type.

• Example — last parameter to library function qsort (in its man page). Call

this by providing, in your code, a function with declaration

int my compare(const char *, const char *);

and using my compare as the last parameter to qsort.

• (Example — improved sort program.)



CSCI 1120 November 13, 2013

Slide 9

Minute Essay

• Many current high-level languages manage memory for you, including

garbage collection. What advantages do you think this has? What

disadvantages? (Both as compared to doing it yourself, as you do in C.)

Slide 10

Minute Essay Answer

• Advantages: easier, less error-prone.

• Disadvantages: less control, possibly unpredictable performance (which in

some contexts matters).


