
CSCI 1120 November 20, 2013

Slide 1

Administrivia

• (Lecture notes for the lecture that didn’t happen.)

• Reminder: Homework 5 due next week.

• One more homework, to be on the Web probably tomorrow, and due during

finals week.

Slide 2

User-Defined Types

• So far we’ve only talked about representing very simple types — numbers,

characters, text strings, arrays, and pointers. You might ask whether there are

ways to represent more complex objects, such as one can do with classes in

object-oriented languages.

• The answer is “yes, sort of” — C doesn’t provide nearly as much syntactic

help with object-oriented programming, but you can get something of the

same effect. But first, some simpler user-defined types . . .



CSCI 1120 November 20, 2013

Slide 3

User-Defined Types in C — typedef

• typedef just provides a way to give a new name to an existing type, e.g.:

typedef charptr char *;

• This can make your code more readable, or allow you to isolate things that

might be different on different platforms (e.g., whether to use float or

double in some application) in a single place.

Slide 4

User-Defined Types in C — enum

• In C (and in some other programming languages) an enumeration or an

enumerated type is just a way of specifying a small range of values, e.g.

enum basic_color { red, green, blue, yellow };

enum basic_color color = red;

This can make code more readable, and sometimes combines nicely with

switch constructs.

• Under the hood, C enumerated types are really just integers, though, and they

can be ugly to work with in some ways (e.g., no nice way to do I/O with them).



CSCI 1120 November 20, 2013

Slide 5

User-Defined Types in C — struct

• More complex (interesting?) types can be defined with struct, which lets

you define a new type as a collection of other types — something like a class

in an object-oriented language, but with no methods and no way to hide

fields/variables.

• Two versions of syntax (next slide) . . .

Slide 6

User-Defined Types in C — struct

• One way to define uses typedef:

typedef struct {

int dollars;

int cents;

} money;

money bank_balance;

• Another way doesn’t:

struct money {

int dollars;

int cents;

};

struct money bank_balance;



CSCI 1120 November 20, 2013

Slide 7

User-Defined Types in C — struct, Continued

• Either way you define a struct, how you access its fields is the same:

. if what you have is a struct itself:

struct money bank_balance;

bank_balance.dollars = 100;

bank_balance.cents = 100;

-> if what you have is a pointer to a struct:

struct money * bank_balance_ptr = &bank_balance;

bank_balance_ptr->dollars = 100;

bank_balance_ptr->cents = 100;

Slide 8

User-Defined Types in C — union

• For completeness, we should mention that C also provides a way of defining a

structure that can contain one of several alternatives (“this OR that”, as

opposed to the “this AND that” of struct) — union.

• See discussion in textbook about this; it can be useful, but can also make

code more difficult to understand.



CSCI 1120 November 20, 2013

Slide 9

Example — Sorted Singly-Linked List

• Now we have enough tools to do a low-level version of something probably

familiar to you — linked list. Idea is the same as in higher-level languages, but

must explicitly deal with many details.

• Textbook has code for singly-listed list; example on “sample programs” takes

a somewhat different approach (recursion rather than iteration, and sorted).

Slide 10

Separate Compilation — Review

• C (like many languages) lets you split large programs into multiple

source-code files. Typical to put function and other declarations in files ending

.h, function definition in files ending .c. Compilation process can be

separated into “compile” (convert source to object code) and “link” (combine

object and library code to make executable) steps.

• UNIX utility make can help manage compilation process. Can also be useful

as a convenient way to always compile with preferred options. Idea behind

make — have computer figure out what needs to be recompiled and issue

right commands to recompile it.



CSCI 1120 November 20, 2013

Slide 11

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example on sample programs page.

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.

Slide 12

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99

• Or you could use

OPT = -O

CFLAGS = -Wall -pedantic -std=c99 $(OPT)

and then optionally override the -O by saying, e.g., make OPT=-g foo.



CSCI 1120 November 20, 2013

Slide 13

One More Useful Tool — valgrind

• valgrind can check for a lot of potential errors — including errors in use

of malloc and free.

• Compile with -g and -O0 and

valgrind executable-name

(May not work on this year’s build?)

Slide 14

Minute Essay

• TBA


