
CSCI 1120 January 30, 2013

Slide 1

Administrivia

• About the reading: You don’t have to read every page carefully, but we won’t

have time in class to cover everything, so you should plan to at least skim.

• Most (non-trivial) code from class will be on the Web, under “Sample

programs”.

Slide 2

Getting Started with Linux (Review)

• (A UNIX person’s response to claims that UNIX isn’t user friendly: “Sure it is.

It’s just choosy about its friends.”)

• The graphical system should give you a way to get a terminal window, which

is what we will use a lot in this class (in keeping with the title!). In theory you

know the basics from CSCI 1320. If you don’t remember much, this might be

a good time to review notes or whatever course materials you still have.



CSCI 1120 January 30, 2013

Slide 3

Useful Command-Line Tips

• The shell (the application that’s processing what you type) keeps a history of

commands you’ve recently typed. Up and down arrows let you cycle through

this history and reuse commands.

(Pedantic aside: “The shell” here means the one you’re most likely to be

using. There are other programs with similar functionality you could use

instead.)

• The shell offers “tab completion” for filenames — if you type part of a filename

and press the tab key, it will try to complete it.

• To learn more about command foo, type man foo. (This also works with

C library routines — more about them later.) This is reference information

rather than a tutorial, but usually very complete.

Slide 4

Text Editors

• Many, many text editors, and people have favorites. I use and will teach in this

class vi: It’s found on every UNIX/Linux system I know of, and is very

powerful, though it takes some getting used to. (vi on our Linux machines is

actually vim, a more capable “clone” of the original vi.) Other popular Linux

text editors include emacs, pico, and various graphical editors that come

with “desktop environments” such as GNOME and KDE.

• Tip: If you’re struggling with whatever editor you previously used, either spend

a little time learning its features, or choose another one! vim has

vimtutor. emacs also has built-in tutorial.



CSCI 1120 January 30, 2013

Slide 5

Programming Basics (as described in CSCI 1320)

• What computers actually execute is machine language — binary numbers

each representing one primitive operation. Once upon a time, people

programmed by writing machine language (!).

• Nowadays, “programming” as we will use it means writing source code in a

high-level language. Source code is simply plain text, which . . . At this point

we diverge from the explanation for beginners. Exactly what happens to get

from source code to something the computer can execute varies among

languages . . .

Slide 6

From Source Code to — What?

• Some high-level languages (such as the language understood by typical

UNIX/Linux command shells) are directly interpreted by some other program.

• Others are compiled into object code (machine language) and then linked

with other object code (including system libraries) to form an executable

(something the operating system can execute).

• Still others (including Scala and Python, sometimes) take an intermediate

approach — initially compiled into byte code (object code for a made-up

processor), which is (in principle) interpreted by a runtime system, with

system library code brought in at runtime. (In practice, a “just-in-time”

compiler may translate byte code into native object code on the fly.)



CSCI 1120 January 30, 2013

Slide 7

Structure of a C Program

• Pre-processor directives: These begin with # and are used to (among other

things) include in the compilation process information about libraries.

• Global identifiers (functions and variables). Function declarations here are

often useful; variables are usually bad practice.

• Function(s), possibly containing variables, returning values, etc. Every

complete program has exactly one main function.

• Syntax should look familiar to Java programmers (no accident — Java was

designed that way). Less familiar to Python and Scala programmers.

Slide 8

A Few Words About “Old C” Versus “New C”

• First ANSI standard for C — 1989. Widely adopted, but has some annoying

limitations.

• Later standard — 1999. Many features are widely implemented, but few

compilers support the full standard, and older programs (and some

programmers concerned about maximum portability) don’t use new features.

Much of what we do in this class will focus on older standard for this reason.

(Some additions will work in gcc only with -std=c99 option.)

• Still-later standards exist but are not (yet?) widely implemented.



CSCI 1120 January 30, 2013

Slide 9

A First C Program

• Last time we wrote the traditional “hello world” program in C, using vi.

(This tradition of having one’s first program in a language print “hello world”?

It comes from the early and still widely-cited book The C Programming

Language, by Kernighan and Ritchie.)

• Once it’s written, compile-and-link by typing gcc hello.c. (There are

other options you should use, but for now this is okay.) Result is a.out.

• Execute by typing a.out.

• What does all this mean? first . . .

Slide 10

A Few Words About Types

• To the hardware, “it’s all ones and zeros”; types say how we want to interpret

them (integers? characters?), define what kinds of things we can do with

particular chunks of data.

• Should be reasonably familiar to Scala programmers but may be new to

Python programmers. Both languages are more willing to guess your intent

than C is. Book lists C’s built-in types. Some will work in gcc only with

-std=c99.



CSCI 1120 January 30, 2013

Slide 11

Functions

• C programs are organized in terms of functions — a somewhat more primitive

version of methods as found in object-oriented programming languages such

as Python and Scala. As in other programming languages, C functions are a

little like mathematical functions, except that evaluating them can have “side

effects”.

(For example, evaluating the library function printf has the side effect of

writing some text to standard output (by default, displaying it in the terminal

window).)

• Unlike in some other languages, C functions have to be declared (or defined)

before being referenced. Declaration includes name, return type, and formal

parameters. For library functions, declaration is usually supplied via a

#include preprocessor directive.

Slide 12

Functions, Continued

• A complete C program must contain a function called main. It can be

declared to take zero parameters, or two. Which to use? Depends on whether

it needs access to command-line arguments. It should return an integer.

• When you execute a compiled/linked program, the operating system calls

main, optionally passing it any command-line arguments. The program ends

when this function does; its return value can be used to indicate whether the

program succeeded (e.g., in shell scripts).

• (Now look again at our “hello world” program. More of it should make sense.)



CSCI 1120 January 30, 2013

Slide 13

Sidebar — Compiler Options

• Earlier I showed the simplest way to use gcc to compile a program. But

there are many variations — options. Specify on the command line, ahead of

name of input file.

• Some of the most useful:

– -Wall and -pedantic warn you about dangerous and non-standard

things. -Wall highly recommended.

– -std=c99 allows you to use full C99.

– -o allows you to name the output file (default a.out).

• Automate with make (more later).

Slide 14

C Basics — Quick Overview

• Unlike Python and Scala scripts (but like Java programs), C programs include

some standard boilerplate (#include for library functions, explicit main).

• Variables must be explicitly declared (including type).

• Expressions similar to those in Python/Scala/Java but with a few differences.

• Statements are also similar, but assignments are considered to be

expressions too, with a value. Allows chaining, e.g.,

a = b = 10;

• A caveat: The C standard does not spell out everything (e.g., size of int

type) so experimental results are not necessarily conclusive (might be specific

to a particular compiler/system).



CSCI 1120 January 30, 2013

Slide 15

A Few Words About Syntax

• Python programmers should note that in C, unlike in Python, indentation is not

generally syntactically significant. (But adopting a consistent style makes your

code more readable to humans.)

• Scala programmers should note that in C, unlike in Scala, the compiler will not

add semicolons to the ends of statements or guess about types.

Slide 16

Variables in C

• To do anything interesting in a program, we need some place to store input

and intermediate values — “variables”.

• In C, variables must be declared, with a name and a type. (Contrast with

Python, Scala.) In C89, all declarations must come before any code.

• Variable names follow rules for identifiers — letters, numbers, and

underscores only, must start with letter or underscore, preferably letter.

Case-sensitive.



CSCI 1120 January 30, 2013

Slide 17

Types in C

• Integer types include int, short, long. (All can be declared

unsigned too.) Unlike in some language (such as Java and Scala), sizes

not strictly defined — e.g., a Java int is exactly 32 bits, but a C int may be

more. (Why? to allow implementations to use whatever is most efficient.)

• Floating-point types include float, double. Binary equivalent of

scientific notation (with exponent and mantissa). Minimum size for double

is larger than for float so allows more significant figures, larger range.

• More about other types later.

Slide 18

Expressions in C

• C (like many other programming languages) has a notion of an expression.

Simple examples (assuming we’ve declared variables x and y):

– 5

– x

– y + 5

– (x + y) / 2

• (To be continued . . . )



CSCI 1120 January 30, 2013

Slide 19

Minute Essay

• Was anything today particularly unclear?


