CSCI 1120 April 24, 2013

Administrivia

o Reminder: Homework 5 due today.

® One more homework, to be assigned later this week and due during finals

week. | also will probably offer an opportunity to resubmit earlier homeworks.

Slide 1

User-Defined Types

e So far we've only talked about representing very simple types — numbers,
characters, text strings, arrays, and pointers. You might ask whether there are
ways to represent more complex objects, such as one can do with classes in

object-oriented languages.

Slide 2 e The answer is “yes, sort of” — C doesn’t provide nearly as much syntactic
help with object-oriented programming, but you can get something of the
same effect. But first, some simpler user-defined types ...




CSCI 1120 April 24, 2013

User-Defined Types in C —t ypedef

e t ypedef just provides a way to give a new name to an existing type, e.g.:
typedef charptr char =;
e This can make your code more readable, or allow you to isolate things that

might be different on different platforms (e.g., whether to use f | oat or
Slide 3 doubl e in some application) in a single place.

User-Defined Types in C — enum

e In C (and in some other programming languages) an enumeration or an
enumerated type is just a way of specifying a small range of values, e.g.
enum basi c_color { red, green, blue, yellow};
enum basi c_col or color = red;

Slide 4 This can make code more readable, and sometimes combines nicely with

swi t ch constructs.

e Under the hood, C enumerated types are really just integers, though, and they
can be ugly to work with in some ways (e.g., no nice way to do I/O with them).




CSCI 1120

April 24, 2013

Slide 5

Slide 6

User-Defined Types in C — St r uct

e More complex (interesting?) types can be defined with St r uct , which lets
you define a new type as a collection of other types — something like a class
in an object-oriented language, but with no methods and no way to hide

fields/variables.

e Two versions of syntax (next slide) ...

User-Defined Types in C — St r uct

e One way to define uses t ypedef :

typedef struct {

int dollars;
int cents;
} noney;

noney bank_bal ance;

e Another way doesn't:

struct noney {
int dollars;
int cents;
b

struct noney bank_bal ance;




CSCI 1120 April 24, 2013

User-Defined Types in C — St r uct , Continued

e Either way you define a St r uct , how you access its fields is the same:
. ifwhatyou have is a St r uct itself:

struct noney bank_bal ance;
bank bal ance. dol l ars = 100;
bank bal ance. cents = 100;

Slide 7
- > if what you have is a pointertoa St r uct :
struct noney * bank_bal ance_ptr = &bank_bal ance;
bank_bal ance_ptr->dol l ars = 100;
bank_bal ance_ptr->cents = 100;
User-Defined Types in C — unl ON
e For completeness, we should mention that C also provides a way of defining a
structure that can contain one of several alternatives (“this OR that”, as
opposed to the “this AND that” of St r uct ) — uni on.
e See discussion in textbook about this; it can be useful, but can also make
Slide 8 code more difficult to understand.




CSCI 1120 April 24, 2013

Example — Sorted Singly-Linked List

o Now we have enough tools to do a low-level version of something probably
familiar to you — linked list. Idea is the same as in higher-level languages, but

must explicitly deal with many details.

e Textbook has code for singly-listed list; example on “sample programs” takes
Slide 9 a somewhat different approach (recursion rather than iteration, and sorted).

Separate Compilation and Makefiles — Review

e C (like many languages) lets you split large programs into multiple
source-code files. Typical to put function and other declarations in files ending
. h, function definition in files ending . C. Compilation process can be
separated into “compile” (convert source to object code) and “link” (combine

object and library code to make executable) steps.
Slide 10

e UNIX utility make can help manage compilation process. Can also be useful

as a convenient way to always compile with preferred options.




CSCI 1120 April 24, 2013

One More Useful Tool —val gri nd

e val gri nd can check for a lot of potential errors — including errors in use
ofmal | oc andfr ee.
e Compile with - g and - Q0 and

val gri nd executable-name
Slide 11

e Anything about C that you'd like to hear more about next time?

Slide 12




