
CSCI 1120 September 10, 2014

Slide 1

Administrivia

• Homework 1 to be on the Web soon. I will send mail. Due in a week.

• A few words about minute essays and homeworks and e-mail:

I sometimes don’t look at minute essays until the next class, or at homeworks

until ready to grade.

So if you have an urgent question, put “urgent” or “question” in the subject

line please!

Slide 2

C Basics — Quick Overview/Review

• Unlike Python and Scala scripts (but like Java programs), C programs include

some standard boilerplate (#include for library functions, explicit main).

• Variables must be explicitly declared, including type.

• Expressions similar to those in Python/Scala/Java but with a few differences.

• Statements are also similar, but assignments are considered to be

expressions too, with a value. Allows chaining, e.g.,

a = b = 10;

• A caveat: The C standard does not spell out everything (e.g., size of int

type), so experimental results are not necessarily conclusive (might be

specific to a particular compiler/system).

CSCI 1120 September 10, 2014

Slide 3

A Few Words About “Old C” Versus “New C”

• First ANSI standard for C — 1989 (“C89”). Widely adopted, but has some

annoying limitations.

• Later standard — 1999 (“C99”). Many features are widely implemented, but

few compilers support the full standard, and older programs (and some

programmers concerned about maximum portability) don’t use new features.

Much of what we do in this class will focus on older standard for this reason.

(Some additions will work in gcc only with -std=c99 option.)

• Still-later standard (2011) exists but is not (yet?) widely implemented.

Slide 4

Variables in C

• To do anything interesting in a program, we need some place to store input

and intermediate values — “variables”.

• In C, variables must be declared, with a name and a type. (Contrast with

Python, Scala.) In C89, all declarations must come before any code.

• Variable names follow rules for identifiers — letters, numbers, and

underscores only, must start with letter or underscore, preferably letter.

Case-sensitive.

• Is there anything like Scala’s val versus var? Not exactly. Variables with

const modifier cannot be directly assigned new values, but there are ways

to evade this restriction using pointers. (More about pointers later.)

CSCI 1120 September 10, 2014

Slide 5

Types in C

• Integer types include int, short, long. (All can be declared

unsigned too.) Unlike in some language (such as Java and Scala), sizes

not strictly defined — e.g., a Java int is exactly 32 bits, but a C int may be

more. (Why? to allow implementations to use whatever is most efficient.)

• Floating-point types include float, double. Binary equivalent of

scientific notation (with exponent and mantissa). Minimum size for double

is larger than for float so allows more significant figures, larger range.

• More about other types later.

Slide 6

Expressions in C

• C (like many other programming languages) has a notion of an expression.

• Every expression has a value, and computing this value is called evaluating

the expression.

• Sometimes evaluating an expression also produces changes to variables in

the expression or other variables; these are called side effects. E.g., a call to

printf is an expression; evaluating it produces a result (yes, really!) and a

side effect.

• Many, many operators of different kinds. For now we’ll look only at the ones

for arithmetic.

CSCI 1120 September 10, 2014

Slide 7

Arithmetic Expressions — Operators

• Usual arithmetic operators +, -, * (multiplication), / (division). (+ and - can

be unary too.)

Notice that division, applied to integers, discards any remainder. This is so

the result will be an integer too, and can even be useful. What if you want a

fraction? Later.

• Also % operator for getting remainder; e.g., x % 2 is 0 if x is even, 1 if it’s

odd.

• Other useful arithmetic operators include pre/post increment/decrement, bit

shifts.

Slide 8

Pre/Post Increment/Decrement

• (These four operators are likely new to Scala programmers.)

• x++ and ++x both have the side effect of adding 1 to x, but considered as

expressions they have different values (before-increment and after-increment

respectively). Similarly for x-- and --x.

• Often used solely for side effect (e.g., as a substitute for the more-verbose

x+=1), but not always (i.e., sometimes used in contexts where expression

value matters too).

CSCI 1120 September 10, 2014

Slide 9

Expressions — “Caveat Programmer”

• Expressions can be quite complex. How they’re evaluated depends on rules

of precedence and associativity. My advice — when in doubt, use

parentheses! Example: (x + y) / 2 versus x + y / 2.

• C standard is somewhat imprecise about details of expression evaluation —

e.g., in evaluating

f() + g()

two functions could be called in either order. (Why? To allow greater flexibility

for implementers, possible allow for more-efficient programs.)

• C syntax allows programmers to write statements/expressions in which a

variable’s value is changed more than once, e.g.,

i = (i++) + (i--);

Syntactically legal, but standard says that such expressions invoke “undefined

behavior”. Best to avoid that!

Slide 10

Simple Output

• Simple/typical way to produce output (to “standard output” — terminal for

now) is with library function printf.

• Parameters are “format string”, which may include “conversion specifications”,

followed by zero or more expressions, one for each conversion specification.

E.g., to print value of int variable x:

printf("the value of x is %d\n", x);

Full details in man page for printf. (Find with man 3 printf.)

CSCI 1120 September 10, 2014

Slide 11

Simple Input

• Simple way to get integer/float input (from “standard input”) is with library

function scanf. Parameters are “format string” (similar to the one for

printf) and list of pointers (more later) to variables, e.g.:

scanf("%d %d", &var1, &var2);

Behaves somewhat like library functions for reading from standard input in

other languages, except that it skips whitespace (including newlines) and

stops when it encounters something other than what it needs (e.g.,

non-numeric characters when number is wanted).

• Considered as an expression, call to scanf has a value, namely the number

of variables successfully read. C-idiomatic way to check for success is

if (scanf("%d %d"&var1, &var2) == 2)

Slide 12

Sidebar — Man Pages, Revisited

• As mentioned earlier, most commands — and many library functions — have

“man pages” (short for “manual”). These are meant as online references

rather than tutorials, so not always easy reading, but usually very complete.

• man program shows its output to you using a program intended for paging

through text. On our systems, default is less. Keystroke commands include

space to go forward, b to go back, q to quit. h for help — or, of course, you

could read all about it (how?).

• Sometimes there are multiple commands/functions with the same name.

printf is one. man printf tells you about the (command-line)

command, not the C library function. To get all possibilities, man -a

printf. To get the one for the library function, man 3 printf.

CSCI 1120 September 10, 2014

Slide 13

Minute Essay

• A student sent me the following program and asked why it printed zero for

both x and x+1. What’s going wrong?

#include <stdio.h>

int main(void) {

int x = 0;

printf("hello world\n");

printf("x = %.2f x+1 = %.2f\n", x, x+1);

return 0;

}

Hint: gcc -Wall gives warnings:
qq.c:7: warning: format %.2f expects type double, but argument 2 has type int

qq.c:7: warning: format %.2f expects type double, but argument 3 has type int

Slide 14

Minute Essay Answer

• The warnings should tip you off to the mismatch between the type of the

expressions (int) and the format (%.2f). The actual data is an integer, but

the program asked for it to be printed as if it were floating-point, with

predictably(?) bad results.

