
CSCI 1120 September 24, 2014

Slide 1

Administrivia

• Reminder: Homework 1 due Friday at 11:59pm.

A request: When you turn in homework by e-mail, please do say on the

subject line which assignment and which course. (I’m teaching more than one

in which students turn in homework this way.)

• Homework 2 to be on the Web soon. I will send mail.

Slide 2

Minute Essay From Last Lecture

• (Review briefly.)

CSCI 1120 September 24, 2014

Slide 3

Conditional Execution

• As in other procedural languages, C has syntax for saying that some code

should be executed only if some condition holds.

• Syntax is

if (boolean-expression)

statement1

else

statement2

where statement1 and statement2 can be single statements or blocks

enclosed in curly braces.

• You can build up chains of conditions by making the statement after else

another if, and you can omit the else and following statement. (The ideas

here should be very familiar, and for most of you even the syntax should be

pretty much what you know.)

Slide 4

Conditional Expressions

• Scala and Python both provide a way to include if/else idea within an

expression.

• C does too, but it’s not as obvious — “ternary operator”, e.g.,

int sign = (x >= 0) ? 1 : -1;

CSCI 1120 September 24, 2014

Slide 5

Conditional Execution — One More Thing

• One other conditional-execution construct you may encounter — switch.

Basically a short form of if/elseif/else. Somewhat like match in Scala but

nowhere near as powerful. Example:

char c; /* code to set value omitted */

switch (c) {

case ’a’: printf("first case\n"); break;

case ’b’: printf("second case\n"); break;

default: printf("default\n");

}

Slide 6

Functions in C

• Functions in C are conceptually much like functions in other procedural

programming languages. (Methods in object-oriented languages are similar

but have some extra capabilities.)

I.e., a function has a name, parameters, a return type, and a body (some

code).

• One difference between C and higher-level languages: You aren’t supposed

to use a function before you tell the compiler about it, either by giving its full

definition or by giving a declaration that specifies its name, parameters, and

return type. The function body can be later in the same file or in some other

file.

• Also, C functions are not supposed to be nested (though some compilers

allow it).

CSCI 1120 September 24, 2014

Slide 7

Parameter Passing in C

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — more later when we talk about them.

Slide 8

Functions, Local Variables, and Recursion

• Functions in C can contain local variables. Every time you call the function,

you get a fresh copy of the variables.

• So yes, recursive functions work the way you (probably?) think they should.

CSCI 1120 September 24, 2014

Slide 9

Library Functions in C

• C does include a library of standard functions, though it’s nowhere near as

extensive as that of some languages.

• At least on UNIX-like systems, for each library function there should be a

man page that tells you about it, including information about #include

files you need and link-time options (e.g., -lm for sqrt). For now, be

advised that asterisks in types denote pointers, which we will talk about soon.

Slide 10

Functions in C — Example(s)

• Examples as time permits.

CSCI 1120 September 24, 2014

Slide 11

Minute Essay

• What (if anything!) was interesting or difficult or otherwise noteworthy about

Homework 1?

