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Administrivia

• Reminder: Homework 4 due today. (Accepted without penalty through next

week.)
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Minute Essay From Last Lecture

• (See previous “answer” slide.) Key points — which many people mentioned

— are that redirection is useful when you’re working with a lot of data and/or

you want to save data for repeated use.
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A Very Little About “Random” Numbers

• Homework 3 asked you to work with the library functions srand() and

rand(). Belatedly, a few words about what they do . . .

• First, what we mean by “random” is (I think!) an interesting question with no

obvious answer. What’s often wanted is something that can’t be predicted,

and it’s not clear we can get that with a system that’s deterministic. Further,

even if we could, we might not want that, since we often want to be able to

repeat a test.

• So, often what we really want is a “pseudo-random number generator” —

something that generates a sequence of numbers that looks random but are

repeatable given some reproducible starting point.

• Early researchers apparently thought more-complex algorithms would give

better results, but — not necessarily. Very simple algorithms can give quite

good results.
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A Very Little About “Random” Numbers, Continued

• Lots of uses for “random” sequences (e.g., so-called “Monte Carlo” methods

for simulating things), so many libraries include function(s) to produce them.

• Typical library provides some way to set the starting point (the “seed”) and

then a function that when called repeatedly produces the sequence —

srand() and rand() in standard C. Mostly these produce a large range

of possible values. (Why is this good?)

• Some libraries also provide functions to map the full range to a smaller one

(e.g., to simulate rolling a die). C doesn’t, but there are some semi-obvious

approaches. The problem on Homework 3 asks you to do a simple

comparison of two of them.
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“It’s All Ones and Zeros”

• At the hardware level, all data is represented in binary form — ones and

zeros. (Why? hardware for that is simpler to build.)

• How then do we represent various kinds of data? First a short review of

binary numbers . . .
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Binary Numbers

• Humans usually use the decimal (base 10) number system, but other

(positive integer) bases work too. (Well, maybe not base 1.)

• In base 10, there are ten possible digits, with values 0 through 9.

In base 2, there are 2 possible digits (bits), with values 0 and 1.

• In base 10, 1010 means what? What about in base 2?



CSCI 1120 November 5, 2014

Slide 7

Converting Between Bases

• Converting from another base to base 10 is easy if tedious (just use

definition).

• Converting from base 10 to another base? Two algorithms for that . . .
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Decimal to Binary, Take 1

• One way is to first find the highest power of 2 smaller than or equal to the

number, write that down, subtract it from the number, and continue.

• In somewhat sloppy pseudocode (letting n be the number we want to

convert):

while (n > 0)

find largest p such that 2p ≤ n

write a 1 in the p-th output position

subtract 2p from n

end while
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Decimal to Binary, Take 2

• Another way produces the answer from right to left rather than left to right,

repeatedly dividing by 2 (again n will be the number we want to convert):

while (n > 0)

divide n by 2, giving quotient q and remainder r

write down r

set n equal to q

end while

(Again, this is a bit sloppy.)
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Octal and Hexadecimal Numbers

• Binary numbers are convenient for computer hardware, but cumbersome for

humans to write. Octal (base 8) and hexadecimal (base 16) are more

compact, and conversions between these bases and binary are

straightforward.

• To convert binary to octal, group bits in groups of three (right to left), and

convert each group to one octal digit using the same rules as for converting to

decimal (base 10).

• Converting binary to hexadecimal is similar, but with groups of four bits. What

to do with values greater than 9? represent using letters A through F (upper

or lower case).
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Computer Representation of Integers

• So now you can probably guess how non-negative integers can be

represented using ones and zeros — number in binary. Fixed size (so we can

only represent a limited range).

• How about negative numbers, though? No way to directly represent

plus/minus. Various schemes are possible. The one most used now is two’s

complement : Motivated by the idea that it would be nice if the way we add

numbers doesn’t depend on their sign. So first let’s talk about addition . . .
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Machine Arithmetic — Integer Addition and Negative
Numbers

• Adding binary numbers works just like adding base-10 numbers — work from

right to left, carry as needed. (Example.)

• Two’s complement representation of negative numbers is chosen so that we

easily get 0 when we add −n and n.

Computing −n is easy with a simple trick: If m is the number of bits we’re

using, addition is in effect modulo 2m. So −n is equivalent to 2m − n, which

we can compute as ((2m − 1) − n) + 1).

• So now we can easily (?) do subtraction too — to compute a − b, compute

−b and add.
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Binary Fractions

• We talked about integer binary numbers. How would we represent fractions?

• With base-10 numbers, the digits after the decimal point represent negative

powers of 10. Same idea works in binary.
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Computer Representation of Real Numbers

• How are non-integer numbers represented? usually as floating point.

• Idea is similar to scientific notation — represent number as a binary fraction

multiplied by a power of 2:

x = (−1)sign × (1 + frac) × 2bias+exp

and then store sign frac, and exp. Sign is one bit; number of bits for the

other two fields varies — e.g., for usual single-precision, 8 bits for exponent

and 23 for fraction. Bias is chosen to allow roughly equal numbers of positive

and negative exponents.

• Current most common format — “IEEE 754”.
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Numbers in Math Versus Numbers in Programming

• The integers and real numbers of the idealized world of math have some

properties not completely shared by their computer representations.

• Math integers can be any size; computer integers can’t.

• Math real numbers can be any size and precision; floating-point numbers

can’t. Also, some quantities that can be represented easily in decimal can’t be

represented in binary.

• Math operations on integers and reals have properties such as associativity

that don’t necessarily hold for the computer representations. (Yes, really!)
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Computer Representation of Text

• We talked already about how “text strings” are, in C, arrays of “characters”.

How are characters represented? Various encodings possible.

• One common one is ASCII — strictly speaking, 7 bits, so fits nicely in smallest

addressable unit of storage on most current systems (8-bit byte).

• Another one is Unicode — originally 16 bits (Java’s char type), now

somewhat more complicated.

• Either encoding can be considered as “small integers”.

• C’s char type often ASCII but doesn’t have to be. (Older systems use(d)

EBCDIC, an encoding rooted in punched cards.) C also has wchar t,

which could be Unicode.
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Minute Essay

• The IEEE 754 standard lays out one way to represent floating-point numbers,

but other ways are possible and have been used. In particular, one could vary

how many bits are used for the exponent and how many for the mantissa.

How might it be useful to use more bits for the exponent and fewer for the

mantissa? What about the other way around?
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Minute Essay Answer

• Using more bits for the exponent means you can represent a larger range of

magnitudes, but with less precision. Using fewer bits for the exponent means

a smaller range of magnitudes but more precision.


