
CSCI 1120 April 9, 2014

Slide 1

Administrivia

• Homework 5 on the Web; due in a week. Write-up is deliberately vague; I will

send more-detailed hints soon. (The idea is for you to think about it first and

then look at the hints.)

Slide 2

Minute Essay From Last Lecture

• Several people mentioned that maybe garbage collection would delete/free

something you still needed. I’m very skeptical — the implementations I know

about only delete/free things that can’t be accessed. Humans, though,

sometimes do make that kind of mistake.

• One person said about HW4 that the encryption problem was interesting

because he had heard a lot about encryption but didn’t know anything about

it. Be advised that the version in the homework is not industrial-strength and

likely very easy to break. Real-world encryption is more complicated!



CSCI 1120 April 9, 2014

Slide 3

User-Defined Types

• So far we’ve only talked about representing very simple types — numbers,

characters, text strings, arrays, and pointers. You might ask whether there are

ways to represent more complex objects, such as one can do with classes in

object-oriented languages.

• The answer is “yes, sort of” — C doesn’t provide nearly as much syntactic

help with object-oriented programming, but you can get something of the

same effect. But first, some simpler user-defined types . . .

Slide 4

User-Defined Types in C — typedef

• typedef just provides a way to give a new name to an existing type, e.g.:

typedef charptr char *;

• This can make your code more readable, or allow you to isolate things that

might be different on different platforms (e.g., whether to use float or

double in some application) in a single place.



CSCI 1120 April 9, 2014

Slide 5

User-Defined Types in C — enum

• In C (and in some other programming languages) an enumeration or an

enumerated type is just a way of specifying a small range of values, e.g.

enum basic_color { red, green, blue, yellow };

enum basic_color color = red;

This can make code more readable, and sometimes combines nicely with

switch constructs.

• Under the hood, C enumerated types are really just integers, though, and they

can be ugly to work with in some ways (e.g., no nice way to do I/O with them).

Slide 6

User-Defined Types in C — struct

• More complex (interesting?) types can be defined with struct, which lets

you define a new type as a collection of other types — something like a class

in an object-oriented language, but with no methods and no way to hide

fields/variables.

• Two versions of syntax (next slide) . . .



CSCI 1120 April 9, 2014

Slide 7

User-Defined Types in C — struct

• One way to define uses typedef:

typedef struct {

int dollars;

int cents;

} money;

money bank_balance;

• Another way doesn’t:

struct money {

int dollars;

int cents;

};

struct money bank_balance;

Slide 8

User-Defined Types in C — struct, Continued

• Either way you define a struct, how you access its fields is the same:

. if what you have is a struct itself:

struct money bank_balance;

bank_balance.dollars = 100;

bank_balance.cents = 100;

-> if what you have is a pointer to a struct:

struct money * bank_balance_ptr = &bank_balance;

bank_balance_ptr->dollars = 100;

bank_balance_ptr->cents = 100;



CSCI 1120 April 9, 2014

Slide 9

User-Defined Types in C — union

• For completeness, we should mention that C also provides a way of defining a

structure that can contain one of several alternatives (“this OR that”, as

opposed to the “this AND that” of struct) — union.

• See discussion in textbook about this; it can be useful, but can also make

code more difficult to understand.

Slide 10

Example — Sorted Singly-Linked List

• Now we have enough tools to do a low-level version of something probably

familiar to you — linked list. Idea is the same as in higher-level languages, but

must explicitly deal with many details.

• Textbook has code for singly-listed list; we will take a different approach

(recursion rather than iteration, and sorted). Sketch some basics now,

continue next time.



CSCI 1120 April 9, 2014

Slide 11

Minute Essay

• One more planned topic — a little about separate compilation and the UNIX

utility make. Anything else C-related you’d like to hear about? (I may ask

again next time.)


