CSCI 1120 April 9, 2014

4 )

Administrivia

e Homework 5 on the Web; due in a week. Write-up is deliberately vague; | will
send more-detailed hints soon. (The idea is for you to think about it first and
then look at the hints.)

Slide 1

Minute Essay From Last Lecture

e Several people mentioned that maybe garbage collection would delete/free
something you still needed. I'm very skeptical — the implementations | know
about only delete/free things that can’t be accessed. Humans, though,
sometimes do make that kind of mistake.

Slide 2 e One person said about HW4 that the encryption problem was interesting
because he had heard a lot about encryption but didn’t know anything about
it. Be advised that the version in the homework is not industrial-strength and

likely very easy to break. Real-world encryption is more complicated!




CSCI 1120 April 9, 2014

User-Defined Types

e So far we've only talked about representing very simple types — numbers,
characters, text strings, arrays, and pointers. You might ask whether there are
ways to represent more complex objects, such as one can do with classes in

object-oriented languages.

Slide 3 e The answer is “yes, sort of” — C doesn’t provide nearly as much syntactic
help with object-oriented programming, but you can get something of the
same effect. But first, some simpler user-defined types ...

User-Defined Types in C —t ypedef

o t ypedef just provides a way to give a new name to an existing type, e.g.:
typedef charptr char =;
e This can make your code more readable, or allow you to isolate things that

might be different on different platforms (e.g., whether to use f | oat or

Slide 4 doubl e in some application) in a single place.




CSCI 1120 April 9, 2014

User-Defined Types in C — enum

e In C (and in some other programming languages) an enumeration or an
enumerated type is just a way of specifying a small range of values, e.g.
enum basi c_color { red, green, blue, yellow};
enum basi c_col or color = red;

Slide 5 This can make code more readable, and sometimes combines nicely with
SWi t ch constructs.

e Under the hood, C enumerated types are really just integers, though, and they

can be ugly to work with in some ways (e.g., no nice way to do I/O with them).

User-Defined Types in C — St r uct

e More complex (interesting?) types can be defined with St r uct , which lets
you define a new type as a collection of other types — something like a class
in an object-oriented language, but with no methods and no way to hide

fields/variables.

Slide 6 e Two versions of syntax (next slide) ...




CSCI 1120

April 9, 2014

Slide 7

User-Defined Types in C — St r uct

e One way to define uses t ypedef :

typedef struct {

int dollars;
int cents;
} noney;

noney bank_bal ance;

e Another way doesn't:
struct noney {
int dollars;
int cents;
b

struct noney bank_bal ance;

Slide 8

User-Defined Types in C — St r uct , Continued

e Either way you define a St r uct , how you access its fields is the same:
. ifwhatyou have isa St r uct itself:

struct noney bank_bal ance;
bank_bal ance. dol l ars = 100;
bank_bal ance. cents = 100;

- > if what you have is a pointertoa St r uct :

struct noney * bank_bal ance_ptr = &bank_bal ance;
bank_bal ance_ptr->dol l ars = 100;
bank_bal ance_ptr->cents = 100;




CSCI 1120 April 9, 2014

4 _ _ . )
User-Defined Types in C — unl On

e For completeness, we should mention that C also provides a way of defining a
structure that can contain one of several alternatives (“this OR that”, as
opposed to the “this AND that” of St r uct ) — uni on.

e See discussion in textbook about this; it can be useful, but can also make

Slide 9 code more difficult to understand.

Example — Sorted Singly-Linked List

o Now we have enough tools to do a low-level version of something probably
familiar to you — linked list. Idea is the same as in higher-level languages, but

must explicitly deal with many details.

e Textbook has code for singly-listed list; we will take a different approach
Slide 10 (recursion rather than iteration, and sorted). Sketch some basics now,

continue next time.




CSCI 1120 April 9, 2014

o One more planned topic — a little about separate compilation and the UNIX
utility mak e. Anything else C-related you'd like to hear about? (I may ask
again next time.)

Slide 11




