
CSCI 1120 April 23, 2014

Slide 1

Administrivia

• Reminder: Homework 5 due today. If you’re having trouble, let me know, and if

my usual office hours don’t work for you maybe we can arrange something . . .

• Homework 6 to be on the Web soon; due either end of next week or during

finals. Some type of linked data structure.

Slide 2

Minute Essay From Last Lecture

• Several people asked about uses for C, or about its origins and why it has

been influential. A bit about that next time.

• Others asked about C versus C++. In a few words, C++ is object-oriented and

has an extensive standard library (like Scala and Java) but (at least

traditionally) requires coping a bit more with low-level details.

• Others asked for more about pointers. I say if you do Homeworks 5 and 6 . . .



CSCI 1120 April 23, 2014

Slide 3

Separate Compilation — Overview

• C (like many languages) lets you split large programs into multiple

source-code files. Typical to put function and other declarations in files ending

.h, function definition in files ending .c. Compilation process can be

separated into “compile” (convert source to object code) and “link” (combine

object and library code to make executable) steps.

• UNIX utility make can help manage compilation process. Can also be useful

as a convenient way to always compile with preferred options. Idea behind

make — have computer figure out what needs to be recompiled and issue

right commands to recompile it. (Similar to what many/some IDEs do behind

the scenes.)

Slide 4

Makefiles

• First step in using make is to set up “makefile” describing how files that make

up your program (source, object, executable, etc.) depend on each other and

how to update the ones that are generated from others. Normally call this file

Makefile or makefile.

Simple example on sample programs page.

• When you type make, make figures out (based on files’ timestamps) which

files need to be recreated and how to recreate them.



CSCI 1120 April 23, 2014

Slide 5

Predefined Implicit Rules

• make already knows how to “make” some things — e.g., foo or foo.o

from foo.c.

• In applying these rules, it makes use of some variables, which you can

override.

• A simple but useful makefile might just contain:

CFLAGS = -Wall -pedantic -O -std=c99

and then you type make foo to compile foo.c to get executable foo.

• Or you could use

OPT = -O

CFLAGS = -Wall -pedantic -std=c99 $(OPT)

and then optionally override the -O by saying, e.g., make OPT=-g foo.

Slide 6

Example — Sorted Singly-Linked List, Continued

• Last time we started writing code for a sorted list, as an example of

implementing an ADT in C. Continue . . .

• (Code on sample programs page. Somewhat elaborate but I wanted to try to

do a nice job of providing a test framework.)



CSCI 1120 April 23, 2014

Slide 7

Minute Essay

• Anything interesting to tell me about Homework 5?


