
CSCI 1120 September 23, 2015

Slide 1

Administrivia

• Reminder: Homework 3 due tomorrow (Web page says today but since it

wasn’t assigned until last Thursday . . . ).

Slide 2

Minute Essay From Last Lecture

• (Nothing really startling — yes, some details take some getting used to, and C

gives you less to work with.)



CSCI 1120 September 23, 2015

Slide 3

Repetition — Loops

• C, like most/many procedural languages, offers several syntaxes for repetition.

Recursion (discussed already) is one, but often not the most straightforward.

• All have some way of expressing common elements (explicitly, rather than the

“do for all” syntax allowed by some languages):

– Initializer (as its name suggests).

– Condition (determines whether repetition continues).

– Body (code to repeat).

– Iterator (something that moves on to next iteration).

Slide 4

while Loops

• Probably the simplest kind of loop. You decide where to put initializer and

iterator. Test happens at start of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

while (n <= 10) { /* condition */

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

}

• Various short ways to write n = n + 1:

n += 1;

n++;

++n;

What do you think happens if we leave out this line?



CSCI 1120 September 23, 2015

Slide 5

for Loops

• Probably the most common type of loop. Particularly useful for anything

involving counting, but can be more general. Syntax has explicit places for

initializer, condition, iterator (so it’s less likely you’ll forget one of them).

• Example — print numbers from 1 to 10:

for (int n = 1; n <= 10; ++n) {

printf("%d\n", n);

}

• Initializer happens once (at start); condition is evaluated at the start of each

iteration; iterator is executed at the end of each iteration. (Note that C89

standard required that n be declared outside the loop.)

Slide 6

do while Loops

• Looks very similar to while loop, but test happens at end of each iteration.

• Example — print numbers from 1 to 10:

int n = 1; /* initializer */

do {

printf("%d\n", n); /* body */

n = n + 1; /* iterator */

} while (n <= 10); /* condition */



CSCI 1120 September 23, 2015

Slide 7

Loops — Example

• Simple example — loop to read integers and compute their sum. (Don’t we

need a place to store them all? No!)

• (Variant of example in book.)

Slide 8

Arrays

• Previously we’ve talked about how to reserve space for a single

number/character and give it a name.

• Arrays extend that by allowing you to reserve space for many

numbers/characters and give a common name to all. You can then reference

an individual element via its index (similar to subscripts in math).



CSCI 1120 September 23, 2015

Slide 9

Arrays in C

• Declaring an array — give its type, name, and how many elements.

Examples:

int nums[10];

double stuff[N];

(The second example assumes N is declared and given a value previously. In

C89, it had to be a constant. In C99, it can be a variable.)

• Referencing an array element — give the array name and an index (ranging

from 0 to array size minus 1). Index can be a constant or a variable. Then use

as you would any other variable. Examples:

nums[0] = 20;

printf("%d\n", nums[0]);

(Notice that the second example passes an array element to a function. AOK!)

Slide 10

Arrays in C, Continued

• We said if you declare an array to be of size n you can reference elements

with indices 0 through n − 1. What happens if you reference element -1? n?

2n?

• Well, the compiler won’t complain. At runtime, the computer will happily

compute a memory address based on the starting point of the array and the

index. If the index is “in range”, all is well. If it’s not (i.e., it’s “out of bounds) . . .



CSCI 1120 September 23, 2015

Slide 11

Arrays in C, Continued

• (What happens if you try to access an array with an index that’s out of

bounds?)

• “Results are unpredictable” (“undefined behavior” in C-speak). Maybe it’s

outside the memory your program can access, in which case you may get the

infamous “Segmentation fault” error message (or with newer compilers you

may get a screenful of equally cryptic messages).

Almost worse is if it’s not — then what’s at the computed memory address

might be some other variable in your program, which will then be

accessed/changed. This is the essence of the buffer overflows you hear

mentioned in connection with security problems.

• What to do? Be careful. (Probably worth noting here that more-recent

languages are apt to check for such errors.)

Slide 12

Arrays — Examples

• (As time permits.)



CSCI 1120 September 23, 2015

Slide 13

Minute Essay

• What did you find interesting, difficult, or otherwise noteworthy about

Homework 3?


