
CSCI 1120 September 30, 2015

Slide 1

Administrivia

• Homework 4 to be on the Web tomorrow (I hope!). I will send mail. To be due

a week after being assigned.

Slide 2

One More Tip

• Remember to compile with -Wall and pay attention to any warning

messages. (The first thing I do when students tell me their code doesn’t work

is . . . It doesn’t always help but sometimes it does!)

CSCI 1120 September 30, 2015

Slide 3

Pointers in C — Overview

• C, in contrast to Scala and Java (and Python), makes an explicit distinction

between things and pointers-to-things.

• In Python and Scala variables are pointers/references to objects, and you

deal with them fairly abstractly. In Java, variables are either references to

objects, or primitives, but one or the other.

• In C, you can have variables that are “things” (integers, floating-point

numbers, etc.) and variables that are “pointers to things” (in some ways more

like variables in Python and Scala, but very low-level and with fewer safety

checks).

Slide 4

Pointers in C — Overview Continued

• That is, in C, pointers can be thought of as memory addresses (indices into

large one-dimensional memory space — not always strictly true but a good

first approximation), though declared to point to variables (or data) of a

particular type.

• Example types:

int * pointer to int;

double * pointer to double;

CSCI 1120 September 30, 2015

Slide 5

Pointers in C — Operators

• & gets a pointer to something in memory. So for example you could write

int x;

int * x ptr = &x;

• * “dereferences” a pointer. So for example you could change x above by

writing

*x ptr = 10;

• You can also perform arithmetic on pointers (e.g., ++x ptr) — something

not allowed in languages more concerned with safety.

Slide 6

Parameter Passing in C — Review

• In C, all function parameters are passed “by value” — which means that the

value provided by the caller is copied to a local storage area in the called

function. The called function can change its copy, but changes aren’t passed

back to the caller.

• An apparent exception is arrays — no copying is done, and if you pass an

array to a function the function can change its contents (as you would want to

do in, say, a sort function). Why “apparent exception”? because really what’s

being passed to the function is not the array but a pointer! so the copying

produces a second pointer to the same actual data.

• This is at least simple and consistent, but has annoying limitations . . .

CSCI 1120 September 30, 2015

Slide 7

Pass By Reference (Sort Of)

• A significant potential limitation on functions is that a function can only return

a single value. Pointers provide a way to get around this restriction: By

passing a pointer to something, rather than the thing itself, we can in effect

have a function return multiple things.

• To make this work, typically you declare the function’s parameters as pointers,

and pass addresses of variables rather than variables.

• (The “sort of” of the title means that this isn’t true pass by reference, as it

exists in some other languages such as C++, but it can be used to more or

less get the same effect.)

Slide 8

Pointers Versus Arrays

• In almost all contexts arrays and pointers are interchangeable.

• In particular, if you declare the type of a function parameter to be a pointer,

you can pass it an array, and vice versa.

CSCI 1120 September 30, 2015

Slide 9

Strings in C — Overview

• C has a data type char, used for much the same purposes as characters in

other language, but with a smaller minimum range (enough to represent 7-bit

ASCII but not Unicode).

• C “strings” are null-terminated arrays of characters and can be worked with as

arrays or using pointers. There are standard library functions for doing (some)

things with characters and strings.

• (Examples as time permits.)

Slide 10

Minute Essay

• What about today’s lecture was unclear? (Maybe the answer will be “nothing”

but probably not.)

